Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria's Hidden Traffic Control

09.02.2015

Researchers at the University of Washington map the localization pattern of nearly every protein in a bacterial cell for its entire cell cycle, a new tool for discovering how bacteria coordinate the timing and location of subcellular processes

Not unlike an urban restaurant, the success of a bacterial cell depends on three things: localization, localization and localization. But the complete set of controls by which bacteria control the movement of proteins and other essential biological materials globally within the confines of their membrane walls has been something of a mystery. Now, researchers at the University of Washington have parsed out the localization mechanisms that E. coli use to sort through and organize their subcellular components.


Janice Haney Carr/CDC

A cluster of colorized E. coli as seen under a scanning electron microscope.

"Despite their small size and relative simplicity, bacterial cells appear to possess a robust and complex level of subcellular organization, both spatially and temporally, that was once thought to only exist in more complex organisms," said Nathan Kuwada, a postdoctoral fellow in the lab of Paul Wiggins at the University of Washington.

"We wanted to know how many mechanisms bacteria possess to localize subcellular components, and to answer this question, we set out to image the localization pattern of nearly every protein in a bacterial cell for the entire cell cycle."

Kuwada will describe the group's findings this week at the Biophysical Society's 59th annual meeting in Baltimore, Md.

E. coli localize nearly one-fifth of their proteins to specific subcellular sites, but until now, the cell-cycle localization behavior of only a small subset of proteins had been characterized in detail.

Kuwada and his colleagues sought to remedy this by imaging an existing library of green-fluorescent protein fusions in E. coli by use of a high-throughput live-cell imaging scheme. This allowed them to image close to a thousand individual protein fusions in growing cells for 6-8 hours, providing them with hundreds of complete cell cycles for each protein.

Using custom image processing software, the researchers processed and organized the thousands of images from each experiment, allowing them to quantitatively compare the localization patterns on a genomic scale. The researchers also developed a public online database with all of their raw and processed data in a browsable and searchable form at: http://mtshasta.phys.washington.edu/localizome

Rather than a small number of patterns combining in various permutations determined by function, the researchers found that bacteria possess a large number of distinct patterns with subtle spatial and temporal differences.

For example, Kuwada and his colleagues also observed that the DNA-binding proteins were asymmetrically distributed towards the daughter cell during cell divisions, despite the morphological symmetry between parent and daughter cells.

"Although the asymmetry is somewhat weak, it is still statistically significant and we think it must have an exciting biological significance," Kuwada said. "This finding, which is only observable using our complete-cell-cycle approach, potentially has many biological consequences that we are currently trying to better understand."

Future work for Kuwada and his colleagues includes further exploring the specific mechanisms that drive subcellular organization, through targeting the behavior of specific groups of proteins such as transcription factors with increased precision.

The presentation, "Global characterization of transcription factor localization and partitioning in Escherichia coli" by Nathan J. Kuwada and Paul A. Wiggins, is at 1:45 PM, on Sunday, February 8, 2015, at the Baltimore Convention Center, in Hall C, poster 383. ABSTRACT: http://bit.ly/1KkOgN0

ABOUT THE MEETING

Each year, the Biophysical Society Annual Meeting brings together more than 6,500 researchers working in the multidisciplinary fields representing biophysics. With more than 3,600 poster presentations, over 200 exhibits, and more than 20 symposia, the BPS Annual Meeting is the largest meeting of biophysicists in the world. Despite its size, the meeting retains its small-meeting flavor through its subgroup symposia, platform sessions, social activities and committee programs. The 59th Annual Meeting will be held at the Baltimore Convention Center.

PRESS REGISTRATION

The Biophysical Society invites professional journalists, freelance science writers and public information officers to attend its Annual Meeting free of charge. For press registration, contact Ellen Weiss at or Jason Bardi at 240-535-4954.

QUICK LINKS

Main Meeting Page: http://tinyurl.com/k8yfvyq
Symposia: http://tinyurl.com/lrahzbu
Itinerary planner: http://tinyurl.com/kxpe272

ABOUT THE SOCIETY

The Biophysical Society, founded in 1958, is a professional, scientific Society established to encourage development and dissemination of knowledge in biophysics. The Society promotes growth in this expanding field through its annual meeting, bi-monthly journal, and committee and outreach activities. Its 9,000 members are located throughout the U.S. and the world, where they teach and conduct research in colleges, universities, laboratories, government agencies, and industry.

For more information on the Society, or the 2015 Annual Meeting, visit http://www.biophysics.org

Contact Information
Jason Socrates Bardi, AIP
jbardi@aip.org
240-535-4954
@jasonbardi

Jason Socrates Bardi, AIP | newswise

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>