Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Australian fire beetle avoids the heat - Its infrared organs warn the insect of hot surfaces

15.02.2018

The Australian jewel beetle Merimna atrata has several heat sensors. Originally it was thought that it uses them to detect forest fires: The insect lays its eggs in the wood of burned eucalyptus trees. Researchers at the University of Bonn were finally able to refute this hypothesis. Instead, the beetle appears to need its heat sensors for a different purpose: to not burn its feet on landing. The study has now been published in the journal PLOS ONE.

The Australian fire beetle is attracted to freshly burnt wood. Experts also call this pyrophilia (“love of fire”). This behavior is not very common in insects. Merimna atrata however has a good reason for this: The dead wood provides plenty of food for the larvae of the beetle, so it uses the wood for oviposition.


The fire beetle is fixed in flight, but still able to turn left and right. Despite of good eyesight, beetles did not change direction when exposed to images of forest fire.

© Helmut Schmitz / University of Bonn

But how does Merimna find a freshly burned area? For some time it has been known that the fire beetle has heat sensors with which it can detect infrared radiation. In a sense, it “sees” hot places in its environment against a cooler background. It was originally believed that the insects use this ability to detect forest fires.

“However, the IR organs in Merimna atrata are relatively insensitive”, Dr. Helmut Schmitz emphasizes. Schmitz is a lecturer at the Institute of Zoology at the University of Bonn; he investigates thermo and infrared reception in the black insects for nearly two decades. “This actually contradicts the assumption that the IR organs enable the beetle to detect fires from a greater distance.”

Beetles stuck with glue

Together with his colleagues, Schmitz has now been able to demonstrate for the first time that these doubts are justified. The scientists designed an ingenious experiment for this purpose. Put simply, they stuck the beetles with their backs to the end of a pin and used this to hang them up. This left the experimental animals with the ability to fly continuously, but without moving forward. “More importantly: They were able to navigate in any direction, i.e. turning right or left”, emphasizes Schmitz.

Then the scientists stimulated the flying beetles with weak infrared radiation from the side. The beetles changed their flight direction in response, but always away from the source and never towards it.

“Merimna’s IR organs are located on both sides of its abdomen; incidentally, this is unique in the animal kingdom”, explains Schmitz. “When we occluded the IR receptors with aluminum foil, the animals no longer reacted to the radiation, but always carried on flying straight ahead. As soon as we removed the foil they displayed their original behavior again.” This observation suggests another use of the heat sensors: “Presumably they help the fire beetles avoid hot spots when approaching an oviposition site such as a freshly burnt branch; these hot spots are not visible with the naked eye to humans and animals during the day,” says Schmitz.

How the animals detect forest fires remains unclear. Even visual stimuli seem to play no role in fire detection, despite Merimna atrata having good eyesight. The researchers tested this hypothesis by showing the beetles slides of large clouds of smoke rising above a forest area. But the insects were completely unimpressed: They never changed their flight direction.

Following the nose

“We therefore assume that Merimna atrata gets its information about an ongoing fire from the smell of smoke”, concludes Helmut Schmitz. This is also important for another reason: Odors can tell you exactly what is actually burning. In contrast, this information cannot be inferred from the heat development or the appearance of a smoke plume. Merimna is very picky: It only lays its eggs in burnt eucalyptus wood and avoids other trees. If the insect was to rely on its IR sense, it would risk being lured into the wrong kind of fires.

Something quite different can be seen with a close European relative; the fire beetles of the genus Melanophila: Their larvae develop in a variety of trees. Heat perception would be quite worthwhile for them. In fact, Melanophila also has infrared sensors, but they are completely different. They can presumably detect infrared radiation even from a long distance: According to measurements and theoretical calculations, Melanophila heat sensors are at least 500 times more sensitive than those of Merimna atrata.

Publication: Marcel Hinz, Adrian Klein, Anke Schmitz and Helmut Schmitz: The impact of infrared radiation in flight control in the Australian “firebeetle” Merimna atrata; PLOS ONE; DOI: 10.1371/journal.pone.0192865

Contact:
PD Dr. Helmut Schmitz
Institute of Zoology at the University of Bonn
Telephone: 0228/73 20 71
Email: h.schmitz@uni-bonn.de

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

Further reports about: beetle forest fires hot spots infrared radiation insect insects larvae

More articles from Life Sciences:

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

nachricht Scientists generate an atlas of the human genome using stem cells
24.04.2018 | The Hebrew University of Jerusalem

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>