Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Athletic frogs have faster-changing genomes

13.04.2012
Physically fit frogs have faster-changing genomes, says a new study of poison frogs from Central and South America.

Stretches of DNA accumulate changes over time, but the rate at which those changes build up varies considerably between species, said author Juan C. Santos of the National Evolutionary Synthesis Center in Durham, North Carolina.


This is Dendrobates leucomelas, a poisonous frog from Venezuelan Guiana. Credit: Photo courtesy of Cesar Barrio-Amoros (www.andigena.org)

In the past, biologists trying to explain why some species have faster-changing genomes than others have focused on features such as body size, generation time, fecundity and lifespan. According to one theory, first proposed in the 1990s, species with higher resting metabolic rates are likely to accumulate DNA changes at a faster rate, especially among cold-blooded animals such as frogs, snakes, lizards and fishes. But subsequent studies failed to find support for the idea.

The problem with previous tests is that they based their measurements of metabolism on animals at rest, rather than during normal physical activity, Santos said.

"Animals rarely just sit there," Santos said. "If you go to the wild, you'll see animals hunting, reproducing, and running to avoid being eaten. The energetic cost of these activities is far beyond the minimum amount of energy an animal needs to function."

To test the idea, Santos scoured forests in Colombia, Ecuador, Venezuela, and Panama in search of poison frogs, subjecting nearly 500 frogs — representing more than 50 species — to a frog fitness test.

He had the frogs run in a rotating plastic tube resembling a hamster wheel, and measured their oxygen uptake after four minutes of exercise.

The friskiest frogs had aerobic capacities that were five times higher than the most sluggish species, and were able to run longer before they got tired.

"Physically fit species are more efficient at extracting oxygen from each breath and delivering it to working muscles," Santos said.

To estimate the rate at which each species' genome changed over time, he also reconstructed the poison frog family tree, using DNA sequences from fifteen frog genes.

When he estimated the number of mutations, or changes in the DNA, for each species over time, a clear pattern emerged — athletic frogs tended to have faster-changing genomes.

Santos tested for other factors as well, such as body and clutch sizes, but athletic prowess was the only factor that was consistently correlated with the pace of evolution.

Why fit frogs have faster-changing genomes remains a mystery. One possibility has to do with harmful molecules called free radicals, which increase in the body as a byproduct of exercise.

During exercise, the circulatory system provides blood and oxygen to the tissues that are needed most — the muscles — at the expense of less active tissues, Santos explained.

When physical activity has stopped, the rush of blood and oxygen when circulation is restored to those tissues produces a burst of free radicals that can cause wear and tear on DNA, eventually causing genetic changes that — if they affect the DNA of cells that make eggs or sperm — can be passed to future generations.

Before you ditch your exercise routine, Santos offers some words of caution. The results don't debunk the benefits of regular physical exercise, which is known to reduce the risk of cancer, heart disease, and diabetes.

"What applies to cold-blooded animals such as poison frogs doesn't necessarily apply to warm-blooded animals such as humans," Santos said.

The findings appeared in the April 10th issue of Molecular Biology and Evolution.

CITATION: Santos, J. (2012). "Fast molecular evolution associated with high active metabolic rates in poison frogs." Molecular Biology and Evolution.

URL: http://mbe.oxfordjournals.org/content/early/2012/04/09/molbev.mss069

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>