Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Using Artificial, Cell-Like 'Honey Pots' To Entrap Deadly Viruses

Researchers from the National Institute of Standards and Technology (NIST) and the Weill Cornell Medical College have designed artificial "protocells" that can lure, entrap and inactivate a class of deadly human viruses—think decoys with teeth.

The technique offers a new research tool that can be used to study in detail the mechanism by which viruses attack cells, and might even become the basis for a new class of antiviral drugs.

A new paper* details how the novel artificial cells achieved a near 100 percent success rate in deactivating experimental analogs of Nipah and Hendra viruses, two emerging henipaviruses that can cause fatal encephalitis (inflammation of the brain) in humans.

"We often call them honey pot protocells," says NIST materials scientist David LaVan, "The lure, the irresistibly sweet bait that you can use to capture something."

Henipaviruses, LaVan explains, belong to a broad class of human pathogens—other examples include parainfluenza, respiratory syncytial virus, mumps and measles—called enveloped viruses because they are surrounded by a two-layer lipid membrane similar to that enclosing animal cells. A pair of proteins embedded in this membrane act in concert to infect host cells. One, the so-called "G" protein, acts as a spotter, recognizing and binding to a specific "receptor" protein on the surface of the target cell.

The G protein then signals the "F" protein, explains LaVan, though the exact mechanism isn't well understood. "The F protein cocks like a spring, and once it gets close enough, fires its harpoon, which penetrates the cell's bilayer and allows the virus to pull itself into the cell. Then the membranes fuse and the payload can get delivered into the cell and take over." It can only do it once, however.

The "honey pot" protocells have a core of nanoporous silica—inert but providing structural strength—wrapped in a lipid membrane like a normal cell. In this membrane the research team embedded bait, the protein Ephrin-B2, a known target of henipaviruses. To test it, they exposed the protocells to experimental analogs of the henipaviruses developed at Weill Cornell. The analogs are nearly identical to henipaviruses on the outside, but instead of henipaviral RNA, they bear the genome of a nonpathogenic virus that is engineered to express a fluorescent protein upon infection. This enables counting and visualizing infected cells.

In controlled experiments, the team demonstrated that the protocells are amazingly effective decoys, essentially clearing a test solution of active viruses, as measured by using the fluorescent protein to determine how many normal cells are infected by the remaining viruses.

The immediate benefit, LaVan says, is a powerful research tool for studying how enveloped viruses work. "This is a nice system to study this sort of choreography between a virus and a cell, which has been very hard to study. A normal cell will have tens of thousands of membrane proteins. You might be studying this one, but maybe it's one of the others that are really influencing your experiment. You reduce this essentially impossibly complicated natural cell to a very pure system, so you now can vary the parameters and try to figure out how you can trick the viruses."

In the long run, say the researchers, the honey pot protocells could become a whole new class of antiviral drugs. Viruses, they point out, are notorious for rapidly evolving to become resistant to drugs, but because the honey pots use the virus's basic infection mechanism, any virus that evolved to avoid them likely would be less effective at infecting normal cells as well.

* M. Porotto, F. Yi, A. Moscona and D.A. LaVan. Synthetic protocells interact with viral nanomachinery and inactivate pathogenic human virus. PLoS ONE published online on March 1, 2011.

Michael Baum | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>