Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The architects of the brain

26.10.2011
Bochum’s neurobiologists have found that certain receptors for the neurotransmitter glutamate determine the architecture of nerve cells in the developing brain.

Individual receptor variants lead to especially long and branched processes called dendrites, which the cells communicate with. The researchers also showed that the growth-promoting property of the receptors is linked to how much calcium they allow to flow into the cells. “These results allow insights into the mechanisms with which nerve cells connect during development”, says Prof. Dr. Petra Wahle from the RUB Working Group on Developmental Neurobiology. The scientists report in Development.


Growth of dendritic processes: When glutamate docks on to the AMPA receptor, calcium ions flow into the nerve cell. They cause the production of special growth molecules which trigger the extension and branching of the dendrites. AG Entwicklungsneurobiologie


Effect of a glutamate receptor: The researchers compared the architecture of special inhibitory nerve cells (interneurons) with low and high numbers of a specific glutamate receptor (GluA1(Q)-flip). Cells with a high number of GluA1(Q)-flip (right) had longer and more branched dendritic processes than cells in which the receptor only occurred rarely (left). AG Entwicklungsneurobiologie

It all depends on a few amino acids

“Nerve cells communicate with chemical and electrical signals”, explains Wahle. “The electrical activity controls many developmental processes in the brain, and the neurotransmitter glutamate plays a decisive role in this.” In two different cell classes in the cerebral cortex of rats, the researchers studied the nine most common variants of a glutamate receptor, the so-called AMPA receptor. When glutamate docks on to this receptor, calcium ions flow into the nerve cells either directly through a pore in the AMPA receptor or through adjacent calcium channels. Depending on the variant, AMPA receptors consist of 800-900 amino acid building blocks, and already the exchange of one amino acid has important consequences for the calcium permeability. Among other things, calcium promotes the growth of new dendrites.

Different cell types, different mechanisms

One at a time, the Bochum team introduced the nine AMPA receptor variants into the nerve cells and observed the impact on the cell architecture. In several cases, this resulted in longer dendrites with more branches. This pattern was demonstrated both for several receptor variants that allow calcium ions to flow directly into the cell through a pore and for those that activate adjacent calcium channels. “It was surprising that in the two cell classes studied, different receptor variants triggered the growth of the dendrites”, says Dr. Mohammad Hamad from the Working Group on Developmental Neurobiology. “In the inhibitory interneurons, only one of the nine variants was effective. Calcium signals are like a toolbox. However, different cell classes in the cerebral cortex make use of the toolbox in different ways.”

Bibliographic record

Hamad, M. I., Ma-Hogemeier, Z. L., Riedel, C., Conrads, C., Veitinger, T., Habijan, T., Schulz, J. N., Krause, M., Wirth, M. J., Hollmann, M., Wahle, P. (2011) Cell class-specific regulation of neocortical dendrite and spine growth by AMPA receptor splice and editing variants. Development 138, 4301-4313, doi: 10.1242/dev.07107

Further information

Prof. Dr. Petra Wahle, AG Entwicklungsneurobiologie, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Tel.: 0234/32-24367

wahle@neurobiologie.ruhr-uni-bochum.de

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>