Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibacterial protein’s molecular workings revealed

22.02.2013
On the front lines of our defenses against bacteria is the protein calprotectin, which “starves” invading pathogens of metal nutrients.
Vanderbilt investigators now report new insights to the workings of calprotectin — including a detailed structural view of how it binds the metal manganese. Their findings, published online before print in the Proceedings of the National Academy of Sciences, could guide efforts to develop novel antibacterials that limit a microbe’s access to metals.

The increasing resistance of bacteria to existing antibiotics poses a severe threat to public health, and new therapeutic strategies to fight these pathogens are needed.
The idea of “starving” bacteria of metal nutrients is appealing, said Eric Skaar, Ph.D., MPH, associate professor of Pathology, Microbiology and Immunology.

In a series of previous studies, Skaar, Walter Chazin, Ph.D., and Richard Caprioli, Ph.D., demonstrated that calprotectin is highly expressed by host immune cells at sites of infection. They showed that calprotectin inhibits bacterial growth by “mopping up” the manganese and zinc that bacteria need for replication.

Now, the researchers have identified the structural features of calprotectin’s two metal binding sites and demonstrated that manganese binding is key to its antibacterial action.

Calprotectin is a member of the family of S100 calcium-binding proteins, which Chazin, professor of Biochemistry and Chemistry, has studied for many years. Chazin and postdoctoral fellow Steven Damo, Ph.D., used existing structural data from other S100 family members to zero in on calprotectin’s two metal binding sites. Then, they selectively mutated one site or the other.

They discovered that calprotectin with mutations in one of the two sites still bound both zinc and manganese, but calprotectin with mutations in the other site only bound zinc.

The researchers recognized that these modified calprotectins — especially the one that could no longer bind manganese — would be useful tools for determining the importance of manganese binding to calprotectin’s functions, Chazin noted.

Thomas Kehl-Fie, Ph.D., a postdoctoral fellow in Skaar’s group, used these altered calprotectins to demonstrate that the protein’s ability to bind manganese is required for full inhibition of Staphylococcus aureus growth. The investigators also showed that Staph bacteria require manganese for a certain process the bacteria use to protect themselves from reactive oxygen species.

“These altered calprotectin proteins were key to being able to tease apart the importance of the individual metals — zinc and manganese – to the bacterium as a whole and to metal-dependent processes within the bacteria,” Skaar said. “They’re really powerful tools.”

Skaar explained that calprotectin likely binds two different metals to increase the range of bacteria that it inhibits. The investigators tested the modified calprotectins against a panel of medically important bacterial pathogens.

“Bacteria have different metal needs,” Skaar said. “Some bacteria are more sensitive to the zinc-binding properties of calprotectin, and others are more sensitive to the manganese-binding properties.”

To fully understand how calprotectin binds manganese, Damo and Chazin — with assistance from Günter Fritz, Ph.D., at the University of Freiburg in Germany — produced calprotectin crystals with manganese bound and determined the protein structure. They found that manganese slips into a position where it interacts with six histidine amino acids of calprotectin.

It’s really beautiful; no one’s ever seen a protein chelate (bind) manganese like this,” Chazin said.“It’s really beautiful; no one’s ever seen a protein chelate (bind) manganese like this,” Chazin said.

The structure explains why calprotectin is the only S100 family member that binds manganese and has the strongest antimicrobial action, and it may allow researchers to design a calprotectin that only binds manganese (not zinc). Such a tool would be useful for studying why bacteria require manganese — and then targeting those microbial processes in new therapeutic strategies, Chazin and Skaar noted.

“We do not know all of the processes within Staph that require manganese; we just know if they don’t have it, they die,” Skaar said. “If we can discover the proteins in Staph that require manganese — the things that are required for growth — then we can target those proteins.”

The team recently was awarded a five-year, $2 million grant from the National Institute of Allergy and Infectious Diseases (AI101171) to advance their studies of calprotectin and how it works to limit bacterial infections and in other inflammatory conditions.

“Nature stumbled onto an interesting antimicrobial strategy,” Chazin said. “Our goal is to really tease apart the importance of metal binding to all of calprotectin’s different roles — and to take advantage of our findings to design new antibacterial agents.”

The research was supported by grants from the National Institutes of Health (CA009582, HL094296, AI091771, AI069233, AI073843, GM062122). Skaar holds the Ernest W. Goodpasture Chair in Pathology; Chazin holds the Chancellor’s Chair in Biochemistry and Chemistry and is director of the Vanderbilt Center for Structural Biology.
Contact:
Leigh MacMillan, (615) 322-4747
leigh.macmillan@vanderbilt.edu

Leigh MacMillan | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>