Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animals learn to fine-tune their sniffs

31.10.2012
Animals use their noses to focus their sense of smell, much the same way that humans focus their eyes, new research at the University of Chicago shows.

A research team studying rats found that animals adjust their sense of smell through sniffing techniques that bring scents to receptors in different parts of the nose. The sniffing patterns changed according to what kind of substance the rats were attempting to detect.


Animals learn to fine tune their ability to smell in order to better detect predators and find food, research on rats at the University of Chicago Shows.

Credit: Reprinted with permission: Leslie Kay, et al. The Journal of Neuroscience 2012

The sense of smell is particularly important for many animals, as they need it to detect predators and to search out food. "Dogs, for instance, are quite dependent on their sense of smell," said study author Leslie Kay, associate professor of psychology and director of the Institute for Mind & Biology at the University of Chicago.

"But there are many chemicals in the smells they detect, so detecting the one that might be from a predator or an explosive, for instance, is a complex process."

Kay was joined in writing the paper by Daniel Rojas-Líbano, a postdoctoral scholar at the University of Chile in Santiago, who received his PhD from UChicago in 2011. Rojas-Líbano, who did the work as a doctoral scholar, was the first author on the publication. Their results are published in an article, "Interplay Between Sniffing and Odorant Properties in the Rat," in the current issue of the Journal of Neuroscience.

Scholars have hypothesized that animals may be able to focus sniffing, just as humans focus their sight to detect a target, like the face of a friend, in a crowd. Humans are also known to be able to adjust their ability to detect specific odors with practice when cooking or sampling wine, for instance.

Kay and Rojas-Libano drew from two ideas proposed by other scholars to test whether animals can focus their sniffs.

In one set of findings, researchers had shown that the nose can act like a gas chromatograph (a device that separates chemicals in complex blends like flower scents), absorbing substances for different times depending on how readily they interact with the water-based mucus on the sensory receptors in the nose. Odorants that have high "sorption values" are easily absorbed into the mucus, while odors that do not absorb easily into water have lower sorption values.

The other finding crucial to the current work was the discovery that changes in the airflow rates of scents entering the nose can change which odors the nose readily detects. Different parts of the nose have different airflows, and classes of receptors suited to detecting specific odors. Researchers had speculated that animals might be able to change airflow to target specific odors in a blend of chemicals, like focusing on smelling a particular scent in a perfume.

But until the publication of the paper by Kay and Rojas-Líbano, no one had been able to test the ideas that arose from those earlier findings.

"Daniel devised an excellent experiment to test these hypotheses," Kay explained.

Rojas-Líbano trained rats to detect a specific odor by rewarding them with a sugar pellet when they had detected a target odor and responded correctly. Electrodes attached to the rats' diaphragm muscles measured the rate at which they were taking in air. He then tested the animals with many mixtures of two chemicals to see if they could pick out those containing the target scent.

The rats were successful in making the distinctions, regardless of which type of odor they were seeking. But the rats learned to look for a highly absorbent odor much more quickly than the rats learning to detect a less absorbent odor.

The rats also inhaled differently, depending on which type of odor they were detecting. The animals inhaled for a longer time when they were learning to detect the low-absorbing odor, and then reduced flow rates once they had learned to detect the odor, researchers determined.

"What was happening was that the air was moving through the nose at a slower rate and targeting those parts of the nasal epithelium that are further along in the pathway—those more likely to pick up the low-absorbent odors," Kay said.

For highly absorbent odors, the animals inhaled more quickly because the parts of the nasal cavity that are sensitive to those smells are closer to the start of the nose's air pathway.

"I think one of the most interesting aspects of these experiments is the finding of the difference in difficulty the rats displayed to detect different targets from the same set of mixtures," Rojas-Líbano said. "This shows that there is more to olfaction than just receptor types and combinations. If detection was solely based on chemical-receptor interactions (as people seem to assume quite often), performance levels should have been more similar between the groups of rats. The physical properties of the odors matter a lot, and so does the type of sniff that an individual uses to smell the odors."

The project was supported with a grant from the National Institute on Deafness and Other Communication Disorders.

William Harms | EurekAlert!
Further information:
http://www.uchicago.edu

Further reports about: animals sense of smell sniffing techniques

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>