Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis of Salamander Jump Reveals an Unexpected Twist

23.01.2014
Citations Society for Integrative and Comparative Biology symposium

A small, secretive creature with unlikely qualifications for defying gravity may hold the answer to an entirely new way of getting off the ground.

Salamanders—or at least several species of the Plethodontidae family—can do something humans would like to know a lot more about.

“This particular jump is unique in the world,” said graduate researcher Anthony Hessel. “That’s why I think a lot of people are finding this very interesting.”

The Northern Arizona University student calls the move a “hip-twist jump” that powers a “flat catapult,” describing the biomechanics in language the public can access. But the work has caught the attention of a highly technical crowd.

Hessel, who studies muscle physiology and biomechanics, recalled the moment he fully grasped the reach of his findings. An email from a premier journal reached him over the holiday break with the subject line “Science is interested in your work.” The contact arose from his presentation at the Society for Integrative and Comparative Biology symposium. There will likely be more who are interested.

“It’s a new way to get vertical lift for animals,” Hessel said. “Something that is flat on the ground, that is not pushing directly down on the ground, can still get up in the air. I’d say that hundreds of engineers will now toy with the idea and figure out what cool things can be built from it.”

Hessel used high-speed film, a home-built cantilever beam apparatus, some well-established engineering equations and biomechanical analysis to produce the details of how a slippery little amphibian with short legs can propel itself six to 10 times its body length into the air.

The key is that the salamander’s legs don’t provide the push that most creatures would require.

“They transfer energy from their torso into the ground in a very special way,” Hessel said. “It’s all about how the energy is transferred into the ground efficiently.”

In describing the movement frame-by-frame from the high-speed film, Hessel said the salamander bends its body, then rapidly pushes that bend—a “C” shape, down through the torso—and this movement can “create a lot of elastic energy.”

“One of the interesting things about the salamander is that the mechanism moves the center of mass in a way that allows this really inefficient-looking mechanism to have a lot of efficiency,” Hessel said.

The next stage of the research is “getting down to the structures of the stiffness properties,” Hessel said. “When you see that there’s more power in the jump that can come from the muscles, then you know there are other places where you have to look, like stored elastic energy, connective tissue stretching and bones moving.”

One of those factors may be the protein titin, an active loader mechanism that is the focus of research by Hessel’s mentor, Regents’ Professor Kiisa Nishikawa. Her interdisciplinary lab group has provided valuable input throughout the project, Hessel said.

For now, the student from Long Island, N.Y., will write and publish his findings to complete his master’s degree, with plans to pursue a doctorate at NAU. Although the salamanders he brought with him from Allegheny College, his undergraduate institution, are not making a return trip to Pennsylvania, the same species is being studied at a lab there to continue the research, which Hessel will oversee himself this summer.

Eric Dieterle | Newswise
Further information:
http://www.nau.edu

More articles from Life Sciences:

nachricht Pathogenic bacteria hitchhiking to North and Baltic Seas?
22.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unconventional quasiparticles predicted in conventional crystals
22.07.2016 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

The Exception and its Rules

25.07.2016 | Physics and Astronomy

Using Ultrashort Pulsed Laser Radiation to Process Fibre-Reinforced Components

25.07.2016 | Materials Sciences

Added bacterial film makes new mortar resistant to water uptake

25.07.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>