Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amateur botanists in Brazil discover a genuflexing plant

15.09.2011
Species exploration using off-the-grid solar energy, Internet, and digital cameras reveals hidden surprises

José Carlos Mendes Santos (a.k.a. Louro) is a handyman in rural northeastern Bahia, Brazil - one of the areas of the world with the highest biodiversity.

Two years ago, he found a tiny, inch-high plant with white-and-pink flowers in the backyards of the off-the-grid house of amateur botanist and local plant collector Alex Popovkin. The little plant was brought home to be grown on a window sill for closer observation. In parallel, work on its identification began. Thanks to solar power and a satellite connection, Popovkin had access to the Internet, and as was his habit, he uploaded some photographs of the plant to Flickr and contacted several taxonomic experts around the globe.

The family (strychnine family, or Loganiaceae) and genus (Spigelia) of the plant were soon established, with a suggestion from a Brazilian botanist that it might be a new species.

A collaboration was started with Lena Struwe, a specialist of the plant's family at Rutgers University, who had previously described a species in the gentian family from the Andes named after Harry Potter (apparating moon-gentian, Macrocarpaea apparata), and another after the Inca tribe (the Inca ring-gentian, Symbolanthus incaicus). More collections were made, photographs uploaded and specimens deposited at the State University at Feira de Santana (HUEFS) in Bahia, while Mari Carmen Molina, a visiting scientist in Struwe's lab from Spain, extracted the plant's DNA. In collaboration with Katherine Mathews from Western Carolina University, it was confirmed that the genus was indeed Spigelia, to which pinkroot, an old North American herbal remedy against intestinal parasites, also belongs.

Only a few miniscule plants were found in the field the first year. They would die each dry season, only to reappear again at the beginning of the rain season. The plant growing on the window sill soon showed a particular and rare characteristic: after fruits were formed, the fruiting branches would bend down, depositing the capsules with seeds on the ground (and sometimes burying them in the soft cover of moss), thereby ensuring that the seeds would end up as close to the mother plant as possible, facilitating its propagation the following season. This phenomenon, called geocarpy, is a rare adaptation to growing in harsh or ephemeral environments. A famous example of geocarpy is the well-known peanut from the legume family that buries its fruits in the ground. The new species, appropriately named Spigelia genuflexa, is described in an open-access paper published this week by the five collaborators in the taxonomic journal PhytoKeys, from where the article can be downloaded for free.

Mr. Popovkin: This is my first botanical publication in a peer-reviewed journal. Hopefully, there will be more to follow. I had since early adolescence felt attraction to plants, especially tropical plants, when working as a volunteer at the greenhouses of the Botanic Garden of the University of St Petersburg, Russia. It took me 30 years to realize my dream of living in the tropics and studying its plants up close. My daily botanizing walks always bring personal discoveries. My help and local fellow collector Louro has also shown great interest in botany.

"It is very easy to think we have found and described most plant species of the world already, but this discovery shows that there are so much left out there without name and recognition", says Struwe and adds, "This discovery shows that the most amazing living things can be found when you least expect it, during times and places when you really aren't looking for something new, and suddenly it is right there in front of you. How many of us haven't had the most brilliant ideas in the shower? The art of taxonomy is finding as well as being able to recognize something as new or different, which is hard when the world is home to millions of species and very few species experts."

This case shows that collaboration between amateurs and professional scientists, using both new molecular and traditional methods and making use of the facilities of the Internet can lead to new discoveries and new efficient ways of documenting the world's biodiversity.

Photographs of Spigelia genuflexa taken by Alex Popovkin are available under a Creative Commons Attribution license (CC BY 2.0) from Flickr.

A link to the Press Release on Pensoft's website, in Portuguese.

Original source: Popovkin AV, Mathews KG, Santos JCM, Molina MC, Struwe L (2011) Spigelia genuflexa (Loganiaceae), a new geocarpic species from the Atlantic forest of northeastern Bahia, Brazil. PhytoKeys 6: 47-65. doi: 10.3897/phytokeys.6.1654

Posted by Pensoft Publishers.

Lena Struwe | EurekAlert!
Further information:
http://www.rutgers.edu
http://www.eurekalert.org/pub_releases/2011-09/pp-abi091411.php

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>