Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Amateur botanists in Brazil discover a genuflexing plant

15.09.2011
Species exploration using off-the-grid solar energy, Internet, and digital cameras reveals hidden surprises

José Carlos Mendes Santos (a.k.a. Louro) is a handyman in rural northeastern Bahia, Brazil - one of the areas of the world with the highest biodiversity.

Two years ago, he found a tiny, inch-high plant with white-and-pink flowers in the backyards of the off-the-grid house of amateur botanist and local plant collector Alex Popovkin. The little plant was brought home to be grown on a window sill for closer observation. In parallel, work on its identification began. Thanks to solar power and a satellite connection, Popovkin had access to the Internet, and as was his habit, he uploaded some photographs of the plant to Flickr and contacted several taxonomic experts around the globe.

The family (strychnine family, or Loganiaceae) and genus (Spigelia) of the plant were soon established, with a suggestion from a Brazilian botanist that it might be a new species.

A collaboration was started with Lena Struwe, a specialist of the plant's family at Rutgers University, who had previously described a species in the gentian family from the Andes named after Harry Potter (apparating moon-gentian, Macrocarpaea apparata), and another after the Inca tribe (the Inca ring-gentian, Symbolanthus incaicus). More collections were made, photographs uploaded and specimens deposited at the State University at Feira de Santana (HUEFS) in Bahia, while Mari Carmen Molina, a visiting scientist in Struwe's lab from Spain, extracted the plant's DNA. In collaboration with Katherine Mathews from Western Carolina University, it was confirmed that the genus was indeed Spigelia, to which pinkroot, an old North American herbal remedy against intestinal parasites, also belongs.

Only a few miniscule plants were found in the field the first year. They would die each dry season, only to reappear again at the beginning of the rain season. The plant growing on the window sill soon showed a particular and rare characteristic: after fruits were formed, the fruiting branches would bend down, depositing the capsules with seeds on the ground (and sometimes burying them in the soft cover of moss), thereby ensuring that the seeds would end up as close to the mother plant as possible, facilitating its propagation the following season. This phenomenon, called geocarpy, is a rare adaptation to growing in harsh or ephemeral environments. A famous example of geocarpy is the well-known peanut from the legume family that buries its fruits in the ground. The new species, appropriately named Spigelia genuflexa, is described in an open-access paper published this week by the five collaborators in the taxonomic journal PhytoKeys, from where the article can be downloaded for free.

Mr. Popovkin: This is my first botanical publication in a peer-reviewed journal. Hopefully, there will be more to follow. I had since early adolescence felt attraction to plants, especially tropical plants, when working as a volunteer at the greenhouses of the Botanic Garden of the University of St Petersburg, Russia. It took me 30 years to realize my dream of living in the tropics and studying its plants up close. My daily botanizing walks always bring personal discoveries. My help and local fellow collector Louro has also shown great interest in botany.

"It is very easy to think we have found and described most plant species of the world already, but this discovery shows that there are so much left out there without name and recognition", says Struwe and adds, "This discovery shows that the most amazing living things can be found when you least expect it, during times and places when you really aren't looking for something new, and suddenly it is right there in front of you. How many of us haven't had the most brilliant ideas in the shower? The art of taxonomy is finding as well as being able to recognize something as new or different, which is hard when the world is home to millions of species and very few species experts."

This case shows that collaboration between amateurs and professional scientists, using both new molecular and traditional methods and making use of the facilities of the Internet can lead to new discoveries and new efficient ways of documenting the world's biodiversity.

Photographs of Spigelia genuflexa taken by Alex Popovkin are available under a Creative Commons Attribution license (CC BY 2.0) from Flickr.

A link to the Press Release on Pensoft's website, in Portuguese.

Original source: Popovkin AV, Mathews KG, Santos JCM, Molina MC, Struwe L (2011) Spigelia genuflexa (Loganiaceae), a new geocarpic species from the Atlantic forest of northeastern Bahia, Brazil. PhytoKeys 6: 47-65. doi: 10.3897/phytokeys.6.1654

Posted by Pensoft Publishers.

Lena Struwe | EurekAlert!
Further information:
http://www.rutgers.edu
http://www.eurekalert.org/pub_releases/2011-09/pp-abi091411.php

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>