Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Alzheimer's could occur

15.04.2013
Protein spheres in the nucleus give wrong signal for cell division

A new hypothesis has been developed by researchers in Bochum on how Alzheimer's disease could occur. They analysed the interaction of the proteins FE65 and BLM that regulate cell division. In the cell culture model, they discovered spherical structures in the nucleus that contained FE65 and BLM.


The fluorescence microscopy image shows several cells grown in the laboratory. In the nucleus (here colored blue), the protein FE65 has fused with other proteins such as BLM to form spherical structures that are seen in yellow. The cytoskeleton of the cell, a very flexible mesh in the cytoplasm, which is formed out of proteins, is shown in red.

Credit: © Thorsten Müller

The interaction of the proteins triggered a wrong signal for cell division. This may explain the degeneration and death of nerve cells in Alzheimer's patients. The team led by Dr. Thorsten Müller and Prof. Dr. Katrin Marcus from the Department of Functional Proteomics in cooperation with the RUB's Medical Proteome Centre headed by Prof. Helmut E. Meyer reported on the results in the "Journal of Cell Science".

Components of spherical structures in the nucleus identified

The so-called amyloid precursor protein APP is central to Alzheimer's disease. It spans the cell membrane, and its cleavage products are linked to protein deposits that form in Alzheimer patients outside the nerve cells. APP anchors the protein FE65 to the membrane, which was the focus of the current study. FE65 can migrate into the nucleus, where it plays a role in DNA replication and repair. Based on cells grown in the laboratory, the team led by Dr. Müller established that FE65 can unite with other proteins in the cell nucleus to form spherical structures, so-called "nuclear spheres". Video microscopy showed that these ring-like structures merge with each other and can thus grow. "By using a special cell culture model, we were able to identify additional components of these spheres", says Andreas Schrötter, PhD student in the working group Morbus Alzheimer at the Institute for Functional Proteomics. Among other things, the scientists found the protein BLM, which is known from Bloom's syndrome – an extremely rare hereditary disease, which is associated with dwarfism, immunodeficiency, and an increased risk of cancer. BLM is involved in DNA replication and repair in the nucleus.

The amount of FE65 determines the amount of BLM in the cell nucleus

Müller's team took a closer look at the function of FE65. By means of genetic manipulation, the researchers generated cell cultures, in which the FE65-production was reduced. A smaller amount of FE65 thus generated a smaller amount of the protein BLM in the nucleus. Instead, BLM collected in another area of the cell, the endoplasmic reticulum. In addition, the researchers found a lower rate of DNA replication in the genetically modified cells. In this way, FE65 influences the replication of the genetic material via the BLM protein. When the researchers cranked up the FE65-production again, the amount of BLM in the nucleus also increased again.

FE65 as a possible trigger for Alzheimer's

In patients with Alzheimer's disease, the protein APP, an interaction partner of FE65, changes. The interaction of the two molecules is important for the transport of FE65 into the nucleus, where it regulates cell division in combination with BLM. Müller's team assumes that the altered APP-FE65 interaction mistakenly sends the cells the signal to divide. Since nerve cells normally cannot divide, they degenerate instead and die. "This hypothesis, which we pursue in the working group Morbus Alzheimer, also delivers new starting points for potential therapies, which are urgently needed for Alzheimer's disease," says Dr. Mueller. In the future, the team will also investigate whether and how the amount of BLM is altered in Alzheimer's patients compared to healthy subjects.

Bibliographic record

A. Schroetter, T. Mastalski, F.M. Nensa, M. Neumann, C. Loosse, K. Pfeiffer, F. El Magraoui, H.W. Platta, R. Erdmann, C. Theiss, J. Uszkoreit, M. Eisenacher, H.E. Meyer, K. Marcus, T. Mueller (2013): FE65 regulates and interacts with the Bloom syndrome protein in dynamic nuclear spheres – potential relevance to Alzheimer's disease, Journal of Cell Science, doi 10.1242/jcs.121004

Further information

Dr. Thorsten Müller
Functional Proteomics
Medical Proteome Center at the Ruhr-Universität
44780 Bochum, Germany
Tel. 0234/32-29265
E-mail: thorsten.t.mueller@rub.de
Editor: Palina Turok
Click for more:
Functional Proteomics, Working Group Morbus Alzheimer http://funktionelle-proteomik.de/de/arbeitsgruppen/morbusalzheimer.html

Medical Proteome Center http://www.medizinisches-proteom-center.de

Thorsten Müller | EurekAlert!
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>