Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Algae in darkness – Survival strategy unraveled

15.03.2011
The world’s oceans teem with unicellular algae that carry out photosynthesis in the sunlight.

It has been known for a while that the particularly abundant diatoms (unicellular algae with a silicate frustule) are also able to survive in the dark bottom of the ocean, where neither photosynthesis nor respiration with oxygen is possible. Scientists of the Max Planck Institute for Marine Microbiology now disclose this artifice of the algae in the journal Proceedings of the National Academy of Sciences: In darkness, the diatoms breathe with nitrate in place of oxygen.


Laser-scanning-fluorescence image of the marine diatom Amphora coffeaeformis. Red: auto-fluorescing chloroplasts, green: lipid membranes (stained with MDY-64). Martin Beutler, bionsys GmbH, Bremen, Germany (www.bionsys.de).

Microalgae often measure only a few hundredths of a millimeter, but due to their vast abundance in the world’s oceans they are responsible for about 40% of the marine primary production, i.e., the biomass production via carbon dioxide fixation in the sunlight. They often appear as massive blooms near the sea surface or as greenish-brownish meadows on the sea floor, if still reached by sunlight. However, diatoms (unicellular algae with a silicate frustule) are also able to survive in the absence of sunlight and oxygen, for instance, buried in the sea floor.

Anja Kamp, Dirk de Beer, Jana L. Nitsch, Gaute Lavik, and Peter Stief, scientists at the Max Planck Institute for Marine Microbiology in Bremen cultivated several diatom species in the laboratory to explore the metabolic process that allows the tiny algae to survive in darkness. A correlation was found between the nitrate that is stored by a diatom cell and its ability to survive in the absence of sunlight and oxygen. The more nitrate the cell contained, the longer it could survive in darkness where the cell does not have the possibility to produce oxygen via photosynthesis for its own respiration. In experiments with the coffee-bean-shaped diatom Amphora coffeaeformis, the scientists proved that diatoms use the nitrate stored in their cells for respiration in the absence of oxygen. Within just one day, most of the stored nitrate is used up, converted to ammonium, and excreted by the cell.

A key finding of the Max-Planck scientists was that diatoms use nitrate just for respiration rather than for biomass production, as would be the case in sunlight. Anja Kamp says: “The rapid consumption of nitrate and the absence of biomass production tell us that nitrate respiration in diatoms is a metabolic process that only serves to prepare the cell for a resting stage and therefore nitrate respiration is not sustained for longer time periods.”

In bacteria, nitrate respiration in the absence of oxygen is nothing exceptional, as many of the bacteria studied at the Max-Planck-Institute are able to breathe with nitrate, sulfate, or even iron compounds. It is more spectacular to discover that algae, i.e., organisms with a cell nucleus, are able carry out both photosynthesis and nitrate respiration, each under different environmental conditions. These results have just been published in the renowned interdisciplinary journal Proceedings of the National Academy of Sciences.

Further inquiries to:
Dr. Anja Kamp; Phone: +49 421 2028 856; akamp@mpi-bremen.de
or to the press officer:
Dr. Manfred Schlösser; Phone: +49 421 2028 704; mschloes@mpi-bremen.de
Download: http://www.pnas.org/content/early/2011/03/09/1015744108.full.pdf+html
Original article:
Diatoms respire nitrate to survive dark and anoxic conditions. Anja Kamp, Dirk de Beer, Jana L. Nitsch, Gaute Lavik, and Peter Stief. Proceedings of the National Academy of Sciences of the United States of America. doi:10.1073/pnas.1015744108

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>