Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advantages of Living in the Dark: The Multiple Evolution Events of ‘Blind’ Cavefish

24.01.2012
Blind Mexican cavefish (Astyanax mexicanus) have not only lost their sight, but have adapted to perpetual darkness by also losing their pigment (albinism) and having altered sleep patterns.

Research led by New York University biologists shows that the cavefish are an example of convergent evolution, with several populations repeatedly, and independently, losing their sight and pigmentation. Their study appears in BioMed Central’s open access journal, BMC Evolutionary Biology.

The blind cavefish and the surface dwelling Mexican tetra, despite appearances, are the same species and can interbreed. The cavefish are simply a variant of the Mexican tetra, albeit ones adapted to living in complete darkness. A team of researchers from Portugal, the United States, and Mexico studied the DNA from 11 populations of cavefish (from three geographic regions) and 10 populations of their surface-dwelling cousins to help understand the evolutionary origin of the physical differences between them.

While results from the genotyping showed that the surface populations were genetically very similar, the story for the cave populations was very different. The cave forms had a much lower genetic diversity, probably as a result of limited space and food. Not surprisingly, the cave populations with the most influx from the surface had the highest diversity. In fact, there seemed to be a great deal of migration in both directions.

It has been thought that, historically, at least two groups of fish lived in the rivers of Sierra de El Abra, Mexico. One group originally colonized the caves, but became extinct on the surface. A different population then restocked the rivers and also invaded the caves.

Richard Borowsky, from the Cave Biology Group at NYU and one of the paper’s co-authors, explained, “We were fortunate in being able to use A. mexicanus as a kind of ‘natural’ experiment where nature has already provided the crosses and isolation events between populations for us. Our genotyping results have provided evidence that the cave variant had at least five separate evolutionary origins from these two ancestral stocks.”

Martina Bradic, an NYU postdoctoral fellow who led the research, conducted the study as part of her graduate work.

“Despite interbreeding and gene flow from the surface populations, the eyeless ‘cave phenotype’ has been maintained in the caves,” she said. “This indicates that there must be strong selection pressure against eyes in the cave environment. Whatever the advantage of the eyeless condition, it may explain why different populations of A. mexicanus cave fish have independently evolved the same eyeless condition, a striking example of convergent evolution.”

Notes to Editors

1. “Gene flow and population structure in the Mexican blind cavefish complex” (Astyanax mexicanus)
Martina Bradic, Peter Beerli, Francisco García-de León, Sarai Esquivel-Bobadilla, and Richard Borowsky

BMC Evolutionary Biology (in press)

Before the embargo lifts, the article is available at: http://bit.ly/w3P0yl
After the embargo lifts, it may be obtained here: http://www.biomedcentral.com/bmcevolbiol/

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central’s open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. BMC Evolutionary Biology is an open access, peer-reviewed journal that considers articles on all aspects of molecular and non-molecular evolution of all organisms, as well as phylogenetics and palaeontology.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

James Devitt | Newswise Science News
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>