Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New adhesive device could let humans walk on walls

Could humans one day walk on walls, like Spider-Man? A palm-sized device invented at Cornell that uses water surface tension as an adhesive bond just might make it possible.

The rapid adhesion mechanism could lead to such applications as shoes or gloves that stick and unstick to walls, or Post-it-like notes that can bear loads, according to Paul Steen, professor of chemical and biomolecular engineering, who invented the device with Michael Vogel, a former postdoctoral associate.

The device is the result of inspiration drawn from a beetle native to Florida, which can adhere to a leaf with a force 100 times its own weight, yet also instantly unstick itself. Research behind the device is published online Feb. 1 in Proceedings of the National Academy of Sciences.

The device consists of a flat plate patterned with holes, each on the order of microns (one-millionth of a meter). A bottom plate holds a liquid reservoir, and in the middle is another porous layer. An electric field applied by a common 9-volt battery pumps water through the device and causes droplets to squeeze through the top layer. The surface tension of the exposed droplets makes the device grip another surface – much the way two wet glass slides stick together.

"In our everyday experience, these forces are relatively weak," Steen said. "But if you make a lot of them and can control them, like the beetle does, you can get strong adhesion forces."

For example, one of the researchers' prototypes was made with about 1,000 300-micron-sized holes, and it can hold about 30 grams – more than 70 paper clips. They found that as they scaled down the holes and packed more of them onto the device, the adhesion got stronger. They estimate, then, that a one-square-inch device with millions of 1-micron-sized holes could hold more than 15 pounds.

To turn the adhesion off, the electric field is simply reversed, and the water is pulled back through the pores, breaking the tiny "bridges" created between the device and the other surface by the individual droplets.

The research builds on previously published work that demonstrated the efficacy of what's called electro-osmotic pumping between surface tension-held interfaces, first by using just two larger water droplets.

One of the biggest challenges in making these devices work, Steen said, was keeping the droplets from coalescing, as water droplets tend to do when they get close together. To solve this, they designed their pump to resist water flow while it's turned off.

Steen envisions future prototypes on a grander scale, once the pump mechanism is perfected, and the adhesive bond can be made even stronger. He also imagines covering the droplets with thin membranes – thin enough to be controlled by the pump but thick enough to eliminate wetting. The encapsulated liquid could exert simultaneous forces, like tiny punches.

"You can think about making a credit card-sized device that you can put in a rock fissure or a door, and break it open with very little voltage," Steen said. "It's a fun thing to think about."

The research was funded primarily by the Defense Advanced Research Projects Agency and also by the National Science Foundation.

Blaine Friedlander | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>