Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ABC Transporters Enable Leaf Beetle Larvae to Accumulate Defensive Precursors When Feeding

Scientists at the Max Planck Institute for Chemical Ecology have discovered the decisive biological stimulator for the accumulation of defensive substances in leaf beetle larvae: ABC transport proteins, which are found in large quantities in glandular cells of the larvae.

Poplar leaf beetles are able to transport salicin, which is found in their leafy diet, via several cell membranes into their defensive glands, where the substance is converted into the defensive compound salicyl aldehyde.

Poplar beetle larva (Chrysomela populi) produce a defensive secretion in response to attacks.
Anja Strauß / Max Planck Institute for Chemical Ecology

The research results not only shed light on the molecular evolution of the defensive system in leaf beetle larvae but also help to elucidate cell biological processes of sequestration in animal tissues.

Food chains and how to escape them

Leaf beetle larvae are part of food chains. They are attacked by predatory insects and parasites, such as hover flies and bugs. To protect themselves, some leaf beetle larvae have developed sophisticated mechanisms. Upon being disturbed, they emit a deterrent from their defensive glands as little droplets on their back. The defensive substances in the secretion are synthesized by the larvae from chemical precursors ingested when the larvae feed on leaves; instead of synthesizing these substances on their own, they save energy. In the case of the poplar leaf beetle, the chemical precursor is salicin, which is present in the leaf tissues of poplars and willows. A sophisticated transport network carries the precursors from the gut into the defensive glands. Only two more enzymatic steps are necessary in order to accumulate the defensive substance salicyl aldehyde in very high concentrations.

But how exactly does the transport work across the membranes of respective tissues? At which stage of the sequestration process does the selection take place? Which nutrients remain in the gut? Which are transported into the defensive glands and the toxic reservoir of the beetle larvae?

CpMRP: A gene highly expressed in the glandular cells

Anja Strauß, who wrote her PhD thesis in the Department of Bioorganic Chemistry at the Max Planck Institute for Chemical Ecology, unraveled the mystery of this mechanism. She studied the gene transcripts in the secretory cells of the poplar leaf beetle Chrysomela populi and found a gene which is 7000 times more expressed in the glandular tissue than in the gut tissue. Gene sequence analysis revealed that the scientists had cloned the gene for a so-called ABC transport protein. Such transport proteins are widespread and occur in almost all organisms, from bacteria to mammals. They also mediate multi-drug resistance, i.e. the resistance to pharmaceutically active compounds, transporting toxic substances potentially dangerous for the cell either away from the cell or into the tiniest cell organelles where they are rendered harmless. However, what role do ABC transporters play in leaf beetle larvae and how are they involved in the typical mechanisms of precursor accumulation in these insects? This was the crucial question Wilhelm Boland, director at the institute, asked.

RNAi confirms key role of ABC transporter

Experiments clearly demonstrated that CpMRP − as the scientists named the transporter − is located in very large amounts in the membranes of small bubbles, the storage vesicles within glandular cells. As soon as the precursors of defensive compounds (here: salicin) are ingested and reach the cells, they immediately accumulate in the cells’ abundant vesicles with the help of ATP, the cell’s energy currency. This is where the name ABC transporter comes from: ATP-binding cassette transporter. The vesicles migrate within glandular cells in the direction of the reservoir, where they unite with the membrane barrier of the large reservoir and distribute their contents. The defensive compound salicyl aldehyde is then produced by the salicin precursor. In case of danger, the repellent is secreted from the tips of the glandular tubercles as the larvae assume a threatening posture

CpMRP functions as a pacemaker in this process: Thanks to its high transport capacities, CpMRP generates a decline in the concentration of salicin in the glandular tissue. As a consequence, there is a continuous and selective flow of salicin molecules via yet unknown transport proteins from the larvae’s bodily fluid. Should the CpMRP gene be switched off by means of RNAi, leaf beetle larvae without the transporter are no longer able to emit defensive compounds. This is how the key role of the transporter was demonstrated.

“It is fascinating that ABC transporters form a huge network within the glandular cells of the leaf beetle larvae which efficiently absorbs the toxins and traps them in storage vesicles,” says Anja Strauß. However: “The process we observed in those insects is not a detoxification process, but rather a well-directed accumulation of toxin precursors ingested by the larvae when they feed on leaves. These precursors are used economically to fend off predators.”

The identification of the CpMRP transporter not only sheds new light on the molecular evolution of the defensive system in leaf beetle larvae, it also demonstrates another important step in the elucidation of the biological basis of cellular sequestration and storage processes in animal tissues. [JWK/AO]

Original Publication:
Strauß, A., Peters, S., Boland, W., Burse, A. (2013). ABC transporter functions as a pacemaker for the sequestration of plant glucosides in leaf beetles. eLIFE, December 3, 2013, DOI: 10.7554/eLife.01096

Further Information:
Dr. Antje Burse, +49 3641 57-1265,
Prof. Dr. Wilhelm Boland, +49 3641 57-1200,
Contact and picture requests:
Angela Overmeyer M.A., MPI for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, + 49 3641 57-2110,

Angela Overmeyer | Max-Planck-Institut
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>