Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A novel surface marker helps scientists 'fish out' mammary gland stem cells

12.04.2013
Stem cells are different from all other cells in our body because they retain the remarkable genetic plasticity to self-renew indefinitely as well as develop into cell types with more specialized functions. However, this remarkable self-renewal capacity comes with a price, as stem cells can become seeds of cancer.

Identifying genetic programs that maintain self-renewing capabilities therefore is a vital step in understanding the errors that derail a normal stem cell, sending it on a path to become a cancer stem cell.

Isolating cells from various other cell types is very much like fishing -- you need a good "hook" that can recognize a specific protein marker on the surface of a cell, in order to pull that cell out. Until now, isolating pure mammary gland stem cells (MaSCs), which are important in mammary gland development as well as breast cancer formation, has posed a challenge. MaSCs are scarce and share common cell-surface markers with other cells. In a paper published today in Proceedings of the National Academy of Sciences, scientists in the laboratory of Professor Gregory Hannon at Cold Spring Harbor Laboratory (CSHL) used a mouse model to identify a novel cell surface marker on MaSCs. Using that marker, the team was able to assemble a sample of MaSCs of unprecedented purity.

"We are describing a marker called Cd1d," says CSHL research investigator Camila Dos Santos, Ph.D., the paper's first author. The marker, also present at the surface of specialized immune cells, is expressed on the surface of a defined population of mammary cells in both mice and humans.

The team took advantage of the fact that MaSCs divide much slower than other cells. They utilized a mouse strain, which expresses a green fluorescent protein, or GFP, in a subtype of epithelial cells, including MaSCs. The trick is that this gene can be turned off by feeding mice a chemical called doxycycline. "The beauty of [this model] is that by stopping GFP expression, you can directly measure the number of cell divisions that have happened since GFP was turned off," Dos Santos explains. "The cells that divide the least will carry GFP the longest and are the ones we characterized."

Using this approach, Dos Santos and her colleagues were able to select stem cells in the mammary glands to examine their gene expression signature. They confirmed that a purification method that used Cd1d, in combination with other known markers, greatly enhanced purity compared to other methods, including those previously published.

"With this advancement, we are now able to profile normal and cancer stem cells at a very high degree of purity , and perhaps point out which genes should be investigated as the next breast cancer drug targets," says Professor Hannon, who is also an Investigator of the Howard Hughes Medical Institute.

This research was supported by NIH Grand Opportunity Award #1 RC2 CA148507 and P01 Award 2P01CA013106.

keywords: stem cells, cancer, breast cancer, mouse models

"Molecular hierarchy of mammary differentiation yields refined markers of mammary stem cells" appeared online in Proceedings of the National Academy of Sciences. The authors are: Camila O. dos Santos, Clare Rebbeck, Elena Rozhkova, Amy Valentine, Abigail Samuels, Lolahon Kadiri, Pavel Osten, Elena Y. Harris, Phillip J. Urei, Andrew D. Smith, and Gregory J. Hannon.

The paper can be obtained at: DOI:10.1073/pnas.1303919110

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for impact of its research in molecular biology and genetics. For more information, visit http://www.cshl.edu.

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

Further reports about: CSHL GFP Merit Award breast cancer cell type immune cell mouse model stem cells

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>