Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A single stem cell mutation triggers fibroid tumors

07.05.2012
Mutated stem cell 'goes wild' in frenzied tumor expansion

Fibroid uterine tumors affect an estimated 15 million women in the United States, causing irregular bleeding, anemia, pain and infertility. Despite the high prevalence of the tumors, which occur in 60 percent of women by age 45, the molecular cause has been unknown.

New Northwestern Medicine preclinical research has for the first time identified the molecular trigger of the tumor --- a single stem cell that develops a mutation, starts to grow uncontrollably and activates other cells to join its frenzied expansion.

"It loses its way and goes wild," said Serdar Bulun, M.D., the chair of obstetrics and gynecology at Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital. "No one knew how these came about before. The stem cells make up only 1 ½ percent of the cells in the tumor, yet they are the essential drivers of its growth."

The paper is published in the journal PLoS ONE. Masanori Ono, M.D., a post-doctoral student in Bulun's lab, is the lead author.

The stem cell initiating the tumor carries a mutation called MED12. Recently, mutations in the MED12 gene have been reported in the majority of uterine fibroid tissues. Once the mutation kicks off the abnormal expansion, the tumors grow in response to steroid hormones, particularly progesterone.

For the study, researchers examined the behavior of human fibroid stem cells when grafted into a mouse, a novel model initiated by Northwestern scientist Takeshi Kurita, a research associate professor of obstetrics and gynecology. The most important characteristic of fibroid stem cells is their ability to generate tumors. Tumors originating from the fibroid stem cell population grew 10 times larger compared to tumors initiated with the main cell population, suggesting a key role of these tumor stem cells is to initiate and sustain tumor growth.

"Understanding how this mutation directs the tumor growth gives us a new direction to develop therapies," said Bulun, also the George H. Gardner Professor of Clinical Gynecology.

This study was supported by National Institutes of Health Grant 34 NIH/NICHD 5P01HD057877, 1R01HD064402, NIH/NCI 1R01CA154358.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>