Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new short cut for stem cell programming

22.03.2012
Researchers at the University of Bonn artificially derive brain stem cells directly from the connective tissue of mice.

Scientists at the Life & Brain Research Center at the University of Bonn, Germany, have succeeded in directly generating brain stem cells from the connective tissue cells of mice. These stem cells can reproduce and be converted into various types of brain cells.

To date, only reprogramming in brain cells that were already fully developed or which had only a limited ability to divide was possible. The new reprogramming method presented by the Bonn scientists and submitted for publication in July 2011 now enables derivation of brain stem cells that are still immature and able to undergo practically unlimited division to be extracted from conventional body cells. The results have now been published in the current edition of the prestigious journal “Cell Stem Cell.”

The Japanese stem cell researcher Professor Shinya Yamanaka and his team produced stem cells from the connective tissue cells of mice for the first time in 2006; these cells can differentiate into all types of body cells. These induced pluripotent stem cells (iPS cells) develop via reprogramming into a type of embryonic stage. This result made the scientific community sit up and take notice. If as many stem cells as desired can be produced from conventional body cells, this holds great potential for medical developments and drug research.

“Now a team of scientists from the University of Bonn has proven a variant for this method in a mouse model,” report Dr. Frank Edenhofer and his team at the Institute of Reconstructive Neurobiology (Director: Dr. Oliver Brüstle) of the University of Bonn. Also involved were the epileptologists and the Institute of Human Genetics of the University of Bonn, led by Dr. Markus Nöthen, who is also a member of the German Center for Neurodegenerative Diseases.

Edenhofer and his co-workers Marc Thier, Philipp Wörsdörfer and Yenal B. Lakes used connective tissue cells from mice as a starting material. Just as Yamanaka did, they initiated the conversion with a combination of four genes. “We however deliberately targeted the production of neural stem cells or brain stem cells, not pluripotent iPS multipurpose cells,” says Edenhofer. These cells are known as somatic or adult stem cells, which can develop into the cells typical of the nervous system, neurons, oligodendrocytes and astrocytes.

The gene “Oct4” is the central control factor

The gene “Oct4” is a crucial control factor. “First, it prepares the connective tissue cell for reprogramming, later, however, Oct4 appears to prevent destabilized cells from becoming brain stem cells” reports the Bonn stem cell researcher. While this factor is switched on during reprogramming of iPS cells over a longer period of time, the Bonn researchers activate the factor with special techniques for only a few days. “If this molecular switch is toggled over a limited period of time, the brain stem cells, which we refer to as induced neural stem cells (iNS cells), can be reached directly,“ said Edenhofer. “Oct4 activates the process, destabilizes the cells and clears them for the direct reprogramming. However, we still need to analyze the exact mechanism of the cellular conversion.“

The scientists at the University of Bonn have thus found a new way to reprogram cells, which is considerably faster and also safer in comparison to the iPS cells and embryonic stem cells. “Since we cut down on the reprogramming of the cells via the embryonic stage, our method is about two to three times faster than the method used to produce iPS cells,“ stresses Edenhofer. Thus the work involved and the costs are also much lower. In addition, the novel Bonn method is associated with a dramatically lower risk of tumors. As compared to other approaches, the Bonn scientists’ method stands out due to the production of neural cells that can be multiplied to a nearly unlimited degree.

Low risk of tumor and unlimited self renewal

A low risk of tumor formation is important because in the distant future, neural cells will replace defective cells of the nervous system. A vision of the various international scientific teams is to eventually create adult stem cells for example from skin or hair root cells, differentiate these further for therapeutic purposes, and then implant them in damaged areas. “But that is still a long way off,“ says Edenhofer. However, the scientists have a rather urgent need today for a simple way to obtain brain stem cells from the patient to use them to study various neurodegenerative diseases and test drugs in a Petri dish. “Our work could form the basis for providing practically unlimited quantities of the patient’s own cells.“ The current study was initially conducted on mice. “We are now extremely eager to see whether these results can also be applied to humans,“ says the Bonn scientist.

Publication: Direct conversion of fibroblasts into stably expandable neural stem cells, Cell Stem Cell, DOI: 10.1016/j.stem.2012.03.003

In the printed edition at April 6th 2012.

Contact information:

Dr. Frank Edenhofer
Institute of Reconstructive Neurobiology
Tel. 0228/6885-529
E-Mail: f.edenhofer@uni-bonn.de

Johannes Seiler | idw
Further information:
http://www3.uni-bonn.de/Pressemitteilungen/073-2012

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>