Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A shock to pollution in chemistry

03.12.2012
X-rays help understand how mechanical action can lead to greener chemistry

Solvents are omnipresent in the chemical industry, and are a major environmental and safety concern. Therefore the large interest in mechanochemistry: an energy-efficient alternative that avoids using bulk solvents and uses high-frequency milling to drive reactions.


The experimental setup at the ESRF in Grenoble (France) with the milling jar containing the white ZIF-8 shown in the front, mounted on a modified industrial mill. The X-rays enter at the yellow circle, and the X-ray detector is set several meters behind the viewer. The robot with the screw driver to push the buttons was devised by Frank Adams, team member from MPI for Solid State Research in Stuttgart, is positioned above the mill and enables remote control. This is necessary because of the lethal level of X-rays during the experiment, which takes places inside a cabin shielded by several centimetres of lead.

Credit: Credit T. Frišèiæ

Milling is achieved by the intense impact of steel balls in a rapidly moving jar, which hinders the direct observation of underlying chemistry. Scientists have now for the first time studied a milling reaction in real time, using highly penetrating X-rays to observe the surprisingly rapid transformations as the mill mixes, grinds and transforms simple ingredients into a complex product. This study opens new opportunities in Green Chemistry and environmentally-friendly synthesis. The results are published in Nature Chemistry dated 2 December 2012.

The international team of scientists was led by Tomislav Friščić of McGill University (Canada) in collaboration with Ivan Halasz from the University of Zagreb (Croatia), scientists from the University of Cambridge (UK), Max-Planck-Institute for Solid State Research in Stuttgart (Germany) and the European Synchrotron Radiation Facility (ESRF) in Grenoble (France).

Everybody remembering their chemistry lessons will recall mixing ingredients into a solvent. This was sometimes water, but more often a solvent such as ether (flammable), chloroform (toxic) or benzene (cancerogenic). Bulk solvents used in industry pose a serious threat to human health and the environment, and their responsible management has a considerable cost.

Although it is well known that mechanical action can break chemical bonds, for example in tear and wear of textile fibres, it is much less known that mechanical force can also be used to synthesize new chemical compounds and materials. In recent years, ball milling has become increasingly popular in the production of highly complex chemical structures. In such synthesis, steel balls are shaken with the reactants and catalysts in a rapidly vibrating jar. Chemical transformations take place at the sites of ball collision, where impact causes instant "hot spots" of localized heat and pressure. This is difficult to model and, without access to real time reaction monitoring, mechanochemistry remained poorly understood. "When we set out to study these reactions, the challenge was to observe the entire reaction without disturbing it, in particular the short-lived intermediates that appear and disappear under continuous impact in less than a minute", says Tomislav Friščić, a Professor at McGill University in Montreal.

The team of scientists chose to study mechanochemical production of the metal-organic framework ZIF-8 (sold as Basolite Z1200) from the simplest and non-toxic components. Materials such as ZIF-8 are rapidly gaining popularity for capturing large amounts of CO2 and, if manufactured cheaply and sustainably, could become widely used for carbon capture, catalysis and even hydrogen storage. "The team came to the ESRF because of our high-energy X-rays capable of penetrating 3 mm thick walls of a rapidly moving reaction jar made of steel, aluminium or plastic.

The X-ray beam must get inside the jar to probe the mechanochemical formation of ZIF-8, and then out again to detect the changes as they happened", says Simon Kimber, a scientist at the European Synchrotron Radiation Facility (ESRF) in Grenoble, who is a member of the team. This unprecedented methodology enabled the real-time observation of reaction kinetics, reaction intermediates and the development of their respective nanoparticles.

This technique is not limited to ZIF-8. In principle, all types of chemical reactions in a ball mill can now be studied and optimized for industrial processing. 'These results hold promise for improving the fundamental understanding of processes central to pharmaceutical, metallurgical, cement and mineral industries and should enable a more efficient use of energy, reduction in solvent and optimize the use of often expensive catalysts. This translates into good news for the environment, the industry and the consumers who will have to pay less", concludes Tomislav Friščić.

Claus Habfast | EurekAlert!
Further information:
http://www.esrf.fr

More articles from Life Sciences:

nachricht More detailed analysis of how cells react to stress
08.02.2016 | Universität Zürich

nachricht A new potential biomarker for cancer imaging
05.02.2016 | Universiti Putra Malaysia (UPM)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: From allergens to anodes: Pollen derived battery electrodes

Pollens, the bane of allergy sufferers, could represent a boon for battery makers: Recent research has suggested their potential use as anodes in lithium-ion batteries.

"Our findings have demonstrated that renewable pollens could produce carbon architectures for anode applications in energy storage devices," said Vilas Pol, an...

Im Focus: Automated driving: Steering without limits

OmniSteer project to increase automobiles’ urban maneuverability begins with a € 3.4 million budget

Automobiles increase the mobility of their users. However, their maneuverability is pushed to the limit by cramped inner city conditions. Those who need to...

Im Focus: Microscopy: Nine at one blow

Advance in biomedical imaging: The University of Würzburg's Biocenter has enhanced fluorescence microscopy to label and visualise up to nine different cell structures simultaneously.

Fluorescence microscopy allows researchers to visualise biomolecules in cells. They label the molecules using fluorescent probes, excite them with light and...

Im Focus: NASA's ICESat-2 equipped with unique 3-D manufactured part

NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK),...

Im Focus: Sinking islands: Does the rise of sea level endanger the Takuu Atoll in the Pacific?

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister picture is being painted evoking the demise of the island states and their cultures. Are the effects of sea-level rise already noticeable on reef islands? Scientists from the ZMT have now answered this question for the Takuu Atoll, a group of Pacific islands, located northeast of Papua New Guinea.

In the last decades, sea level has been rising continuously – about 3.3 mm per year. For reef islands such as the Maldives or the Marshall Islands a sinister...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

DATE 2016 Highlighting Automotive and Secure Systems

26.01.2016 | Event News

 
Latest News

Ocean acidification makes coralline algae less robust

08.02.2016 | Earth Sciences

Online shopping might not be as green as we thought

08.02.2016 | Studies and Analyses

Proteomics and precision medicine

08.02.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>