Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards a new moth perfume

19.02.2013
A single mutation in a moth gene has been shown to be able to produce an entirely new scent.
This has been shown in a new study led by researchers from Lund University in Sweden. In the long run, the researchers say that the results could contribute to tailored production of pheromones for pest control.

Male moths can pick up the scent of a female moth from a distance of several hundred metres. The females produce sexual pheromones – scent substances that guide the males to them. There are around 180 000 species of moth and butterfly in the world, and most of them communicate using pheromones. Small differences between the different scents enable the males to find females of their own species.

Researchers at Lund University have previously shown that new species of moth can evolve as a result of changes in the female moths’ scent. Now the researchers have published a study on how these changes come about at genetic level.

“Our results show that a single mutation, which leads to the substitution of a critical amino acid, is sufficient to create a new pheromone blend”, says Professor Christer Löfstedt from the Department of Biology at Lund University.

The study has been carried out together with researchers in Japan and focuses on a moth genus called Ostrinia. The researchers have studied one of the genes that control the production of pheromones. It is in this context that the mutation and the substituted amino acid in an enzyme have shown to result in a new scent substance. The enzyme is active in the process that converts fatty acids into alcohols, which constitute the ingredients in many moth scents.

“Pheromones are already one of the most frequently used methods for environmentally friendly pest control”, says Christer Löfstedt. “With this knowledge, we hope in the future to be able to tailor the production of pheromones in yeast cells and plants to develop a cheap and environmentally friendly production process.”

For more information, contact: Professor Christer Löfstedt, Department of Biology, Lund University, Sweden, tel. +46 46 222 93 38, Christer.Lofstedt@biol.lu.se

Helga Ekdahl Heun | idw
Further information:
http://www.vr.se
http://www.pnas.org/content/early/2013/02/13/1208706110

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>