Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new measure for the malignancy of melanoma

16.03.2009
Every tumor, starting from a size of a few millimeters, depends on a supply of nutrients and oxygen. Therefore, using special growth factors, it induces vascular wall cells of neighboring blood vessels to sprout new capillaries in order to get connected to the blood circulation.

This process called angiogenesis involves a number of different growth factors and their respective receptors on the vascular wall cells. The departments of Prof. Dr. Hellmut Augustin and Prof. Dirk Schadendorf of DKFZ and Mannheim Medical Faculty of the University of Heidelberg have investigated the role of a growth factor called angiopoietin-2 (Ang2) in malignant melanoma. The docking station of Ang2 is the receptor Tie2 on the surface of endothelial cells, which form the inner lining of blood vessels. Together with other signaling molecules, Ang2 induces sprouting of endothelial cells and the formation of new capillaries.

When measuring the Ang2 concentrations in blood samples of melanoma patients, the investigators discovered that larger tumors and more advanced disease stages correlate with high levels of Ang2. If one tracks the Ang2 levels of individual patients over time, a rise parallel to disease progression can be observed. In contrast, patients who have lived with the disease for a long time, i.e., whose disease is not or only slightly progressive, have lower Ang2 levels. The scientists found out that Ang2 concentration in blood serum is a more precise indicator of the progression and stage of the disease than previously used biomarkers.

This close association between melanoma progression and Ang2 level prompted the question of whether the Ang2 growth factor really only stimulates vascularization in the tumor or whether it has additional influence on the properties of the cancer cells themselves. Such an effect had not yet been proposed for any one of the various growth factors which act on the cells of the vascular walls. Melanoma cells were really found to produce both soluble Ang2 and the matching receptor, Tie2, on their own cell membrane. As a result, they are theoretically capable of activating themselves. In order to check this, researchers switched off the Ang2 production in melanoma cells using a genetic trick. Test systems in the culture dish subsequently revealed that the skin cancer cells had lost their ability to migrate. The migration tendency of cancer cells is regarded as important information about their ability to invade other tissue in the body and metastasize.

The tumor appears to seize the signaling system of vascularization and, thus, to strengthen its malignant properties. "Ang2 is a very promising candidate," Hellmut Augustin comments on the results, „both as a biomarker for better monitoring of disease progression and as a target structure for therapy measures." Blocking Ang2 might not only attack the tumor's blood supply, but also reduce its malignant growth.

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de
http://www.helmholtz.de

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>