Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new measure for the malignancy of melanoma

16.03.2009
Every tumor, starting from a size of a few millimeters, depends on a supply of nutrients and oxygen. Therefore, using special growth factors, it induces vascular wall cells of neighboring blood vessels to sprout new capillaries in order to get connected to the blood circulation.

This process called angiogenesis involves a number of different growth factors and their respective receptors on the vascular wall cells. The departments of Prof. Dr. Hellmut Augustin and Prof. Dirk Schadendorf of DKFZ and Mannheim Medical Faculty of the University of Heidelberg have investigated the role of a growth factor called angiopoietin-2 (Ang2) in malignant melanoma. The docking station of Ang2 is the receptor Tie2 on the surface of endothelial cells, which form the inner lining of blood vessels. Together with other signaling molecules, Ang2 induces sprouting of endothelial cells and the formation of new capillaries.

When measuring the Ang2 concentrations in blood samples of melanoma patients, the investigators discovered that larger tumors and more advanced disease stages correlate with high levels of Ang2. If one tracks the Ang2 levels of individual patients over time, a rise parallel to disease progression can be observed. In contrast, patients who have lived with the disease for a long time, i.e., whose disease is not or only slightly progressive, have lower Ang2 levels. The scientists found out that Ang2 concentration in blood serum is a more precise indicator of the progression and stage of the disease than previously used biomarkers.

This close association between melanoma progression and Ang2 level prompted the question of whether the Ang2 growth factor really only stimulates vascularization in the tumor or whether it has additional influence on the properties of the cancer cells themselves. Such an effect had not yet been proposed for any one of the various growth factors which act on the cells of the vascular walls. Melanoma cells were really found to produce both soluble Ang2 and the matching receptor, Tie2, on their own cell membrane. As a result, they are theoretically capable of activating themselves. In order to check this, researchers switched off the Ang2 production in melanoma cells using a genetic trick. Test systems in the culture dish subsequently revealed that the skin cancer cells had lost their ability to migrate. The migration tendency of cancer cells is regarded as important information about their ability to invade other tissue in the body and metastasize.

The tumor appears to seize the signaling system of vascularization and, thus, to strengthen its malignant properties. "Ang2 is a very promising candidate," Hellmut Augustin comments on the results, „both as a biomarker for better monitoring of disease progression and as a target structure for therapy measures." Blocking Ang2 might not only attack the tumor's blood supply, but also reduce its malignant growth.

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de
http://www.helmholtz.de

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>