Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A key to the world of our mind's eye

07.06.2013
Seeing is a constructive process. The seemingly perfect images that we perceive at any moment in time are illusions generated by our brain.

The brain uses an internal model of the outer visible world to create such illusions. Frankfurt Scientists have now revealed the functionality of this “mind’s eye”. By using a new mathematical model they were able to describe the behavior of brain cells more accurately.


In everyday life, we often see objects occluding each other, such as a branch of a bush hiding another in this figure (red box). The image of the two objects is projected into the brain in which specialized nerve cells react to certain image traits with increased activity. To understand the image, the brain has to decompose it into its original components (here: the two branches). A new mathematical model of this decomposition now predicts that there must be many nerve cells responding to globular features in order to understand occlusions (here: new neural response). This type of cells has been observed for some time, but up to now has never been linked to visual occlusions. Figure: Jörg Lücke / Bornschein J. et al. (2013): Are V1 simple cells optimized for visual occlusions? A comparative study. PLoS Computational Biology 9(6): e1003062.

In contrast to previous models, this model takes into account occlusions between objects in the world. The researchers have thus shown that our brain activity is much more directly connected with the properties of the outside world than anticipated.

In 1981, the neuroscientists Hubel and Wiesel were awarded the Nobel Prize for the discovery of brain cells that react with high activity to the edges of objects in images. Their findings have shown that our brain activity is related to features such as edges of objects. Later on, mathematical models were able to explain why neurons respond to certain object features.

These models describe how the brain generates an internal image —yet, so far, they reflect rather insufficiently the actual structure of natural images. Occlusions between objects are ignored, for instance, although they are ubiquitous in the visible world. A certain type of nerve cell— only known for a few years—is difficult to be described with the current simplified models.

Researchers at the Bernstein Focus Neurotechnology Frankfurt, at the Goethe-University Frankfurt and at the Frankfurt Institute for Advanced Studies have now shown that the behavior of these new brain cells can be better characterized in computational models when further information is taken into account.

In the study, the scientists compared conventional models with one taking occlusions between objects into account. The new descriptive model was better at predicting the functional traits of this special type of nerve cells. The result also provides hints at the function of these neurons: "There are other possible explanations why there are such cells in our brain," says Jörg Lücke, "but our results indicate the encoding of occlusions as the most plausible explanation at hand."

The researchers involved believe that the newly acquired knowledge can crucially advance the development of automated image and video analysis technology. "We still know very little about how our brain understands and interprets images. At the same time, our brains—as well as the brains of animals—are still far superior to today's computer programs in the task of image understanding," said Lücke. An improvement of so-called computer vision techniques would have a variety of applications. An application Lücke and colleagues are currently busy working on is the analysis of microscopy images for automated cancer detection.

This study was funded by the German Research Foundation (DFG) and within the Bernstein Focus Neurotechnology Frankfurt. Furthermore, it was supported by the Honda Research Institute Europe.

The Bernstein Focus Neurotechnology Frankfurt is part of the National Bernstein Network Computational Neuroscience in Germany. With this funding initiative, the German Federal Ministry of Education and Research (BMBF) has supported the new discipline of Computational Neuroscience since 2004 with over 170 million euros. The network is named after the German physiologist Julius Bernstein (1835-1017).

Contact:
Dr. Jörg Lücke
Bernstein Focus Neurotechnology Frankfurt and
Frankfurt Institute for Advanced Studies
Goethe-Universität Frankfurt
Ruth-Moufang-Straße 1
60438 Frankfurt am Main
eMail: luecke@fias.uni-frankfurt.de
Tel: +49 (0)69 798 47509

Original publication:
J. Bornschein, M. Henniges and J. Lücke (2013): Are V1 simple cells optimized for visual occlusions? A comparative study. PLoS Computational Biology 9(6): e1003062.

doi:10.1371/journal.pcbi.1003062

Weitere Informationen:

http://fias.uni-frankfurt.de/de/cnml Lab’s website
http://www.bfnt-frankfurt.de Bernstein Focus Neurotechnology Frankfurt
http://www.uni-frankfurt.de Goethe University Frankfurt
http://wwww.nncn.de National Bernstein Netzwork Computational Neuroscience

Mareike Kardinal | idw
Further information:
http://wwww.nncn.de

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>