Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A glimpse into the genetic basis of schizophrenia

25.07.2014

Novel genetic associations might enlighten underlying molecular mechanisms of schizophrenia and provide biomarkers for future diagnosis

For schizophrenia, biomarkers or supportive diagnostic tests are scarce and for many patients the efficacy of pharmacological treatment is limited. The PGC-SZ (Psychiatric Genomics Consortium - Schizophrenia), including scientists from the Max Planck Institute of Psychiatry in Munich, has now identified more than 100 genetic loci related to schizophrenia.


Artistic view of how life feels after the diagnosis of schizophrenia.

© Glen Brady, Queensland Centre for Mental Health Research

The results point to molecules that are currently the most promising targets for therapeutics also aligning well with recent theories about factors causing schizophrenia. The novel findings provide a relevant foundation for mechanistic and treatment development studies.

Schizophrenia is known to be a heritable disorder, highlighting inherited genetic variants to be a key causative for this disease. Due to the scarcity of biomarkers or supportive diagnostic tests, diagnosis is almost exclusively clinician-based. Furthermore, although pharmacological treatments are available for schizophrenia, their efficacy is limited for many patients.

The PGC-SZ, including Bertram Müller-Myhsok, Research Group Leader at the Max Planck Institute of Psychiatry in Munich, has now performed a genome-wide association study and identified more than 100 genomic loci that are significantly related to schizophrenia.

“Our findings include molecules that are currently the most promising targets for therapeutics and point to molecular systems aligning with the predominant theories on factors causing schizophrenia,” states Bertram Müller-Myhsok. “This might suggest that the many novel findings we report also provide a relevant foundation for treatment development studies.”

Particularly variations in genes related to altered glutamatergic synaptic and calcium channel function might serve as a panel of biomarkers for future diagnosis of schizophrenia or might allow better understanding of the molecular mechanisms underlying the disease.

Such associations with genes playing a role in the central nervous system are most relevant for the development of treatment strategies. The results of the study verified genetic associations with the gene coding for the type 2 dopaminergic receptor (DRD2).

“All available antipsychotic drugs are thought to exert their main therapeutic effects through blockade of DRD2,” explains Bertram Müller-Myhsok. “Since the discovery of this mechanism over 60 years ago, no new antipsychotic drug of proven efficacy has been developed based on other target molecules.” Thus, therapeutic stasis is in large part a consequence of the fact that the disease-causing mechanisms are still unknown. Identifying the causes of schizophrenia is therefore a critical step towards improving treatment and outcome for patients suffering from this disorder.

Contact 

Dr. Bertram Müller-Myhsok

Max Planck Institute of Psychiatry, München

Phone: +49 89 30622-246

 

Anna Niedl

Press and Public Relations

Max Planck Institute of Psychiatry, München

Phone: +49 89 30622-263
Fax: +49 89 30622-370

 

Original publication

 
Schizophrenia Working Group of the Psychiatric Genomics Consortium.
Biological insights from 108 schizophrenia-associated genetic loci.
Nature, 22. Juli 2014 (doi:10.1038/nature13595)AN/HR

Dr. Bertram Müller-Myhsok | Max-Planck-Institute

Further reports about: Psychiatry biomarkers disorder findings mechanisms schizophrenia therapeutic

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>