Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A glimpse into the genetic basis of schizophrenia

25.07.2014

Novel genetic associations might enlighten underlying molecular mechanisms of schizophrenia and provide biomarkers for future diagnosis

For schizophrenia, biomarkers or supportive diagnostic tests are scarce and for many patients the efficacy of pharmacological treatment is limited. The PGC-SZ (Psychiatric Genomics Consortium - Schizophrenia), including scientists from the Max Planck Institute of Psychiatry in Munich, has now identified more than 100 genetic loci related to schizophrenia.


Artistic view of how life feels after the diagnosis of schizophrenia.

© Glen Brady, Queensland Centre for Mental Health Research

The results point to molecules that are currently the most promising targets for therapeutics also aligning well with recent theories about factors causing schizophrenia. The novel findings provide a relevant foundation for mechanistic and treatment development studies.

Schizophrenia is known to be a heritable disorder, highlighting inherited genetic variants to be a key causative for this disease. Due to the scarcity of biomarkers or supportive diagnostic tests, diagnosis is almost exclusively clinician-based. Furthermore, although pharmacological treatments are available for schizophrenia, their efficacy is limited for many patients.

The PGC-SZ, including Bertram Müller-Myhsok, Research Group Leader at the Max Planck Institute of Psychiatry in Munich, has now performed a genome-wide association study and identified more than 100 genomic loci that are significantly related to schizophrenia.

“Our findings include molecules that are currently the most promising targets for therapeutics and point to molecular systems aligning with the predominant theories on factors causing schizophrenia,” states Bertram Müller-Myhsok. “This might suggest that the many novel findings we report also provide a relevant foundation for treatment development studies.”

Particularly variations in genes related to altered glutamatergic synaptic and calcium channel function might serve as a panel of biomarkers for future diagnosis of schizophrenia or might allow better understanding of the molecular mechanisms underlying the disease.

Such associations with genes playing a role in the central nervous system are most relevant for the development of treatment strategies. The results of the study verified genetic associations with the gene coding for the type 2 dopaminergic receptor (DRD2).

“All available antipsychotic drugs are thought to exert their main therapeutic effects through blockade of DRD2,” explains Bertram Müller-Myhsok. “Since the discovery of this mechanism over 60 years ago, no new antipsychotic drug of proven efficacy has been developed based on other target molecules.” Thus, therapeutic stasis is in large part a consequence of the fact that the disease-causing mechanisms are still unknown. Identifying the causes of schizophrenia is therefore a critical step towards improving treatment and outcome for patients suffering from this disorder.

Contact 

Dr. Bertram Müller-Myhsok

Max Planck Institute of Psychiatry, München

Phone: +49 89 30622-246

 

Anna Niedl

Press and Public Relations

Max Planck Institute of Psychiatry, München

Phone: +49 89 30622-263
Fax: +49 89 30622-370

 

Original publication

 
Schizophrenia Working Group of the Psychiatric Genomics Consortium.
Biological insights from 108 schizophrenia-associated genetic loci.
Nature, 22. Juli 2014 (doi:10.1038/nature13595)AN/HR

Dr. Bertram Müller-Myhsok | Max-Planck-Institute

Further reports about: Psychiatry biomarkers disorder findings mechanisms schizophrenia therapeutic

More articles from Life Sciences:

nachricht Perseus translates proteomics data
27.07.2016 | Max-Planck-Institut für Biochemie

nachricht Severity of enzyme deficiency central to favism
26.07.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New study reveals where MH370 debris more likely to be found

27.07.2016 | Earth Sciences

Dirty to drinkable

27.07.2016 | Materials Sciences

Exploring one of the largest salt flats in the world

27.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>