Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A glimpse into the genetic basis of schizophrenia


Novel genetic associations might enlighten underlying molecular mechanisms of schizophrenia and provide biomarkers for future diagnosis

For schizophrenia, biomarkers or supportive diagnostic tests are scarce and for many patients the efficacy of pharmacological treatment is limited. The PGC-SZ (Psychiatric Genomics Consortium - Schizophrenia), including scientists from the Max Planck Institute of Psychiatry in Munich, has now identified more than 100 genetic loci related to schizophrenia.

Artistic view of how life feels after the diagnosis of schizophrenia.

© Glen Brady, Queensland Centre for Mental Health Research

The results point to molecules that are currently the most promising targets for therapeutics also aligning well with recent theories about factors causing schizophrenia. The novel findings provide a relevant foundation for mechanistic and treatment development studies.

Schizophrenia is known to be a heritable disorder, highlighting inherited genetic variants to be a key causative for this disease. Due to the scarcity of biomarkers or supportive diagnostic tests, diagnosis is almost exclusively clinician-based. Furthermore, although pharmacological treatments are available for schizophrenia, their efficacy is limited for many patients.

The PGC-SZ, including Bertram Müller-Myhsok, Research Group Leader at the Max Planck Institute of Psychiatry in Munich, has now performed a genome-wide association study and identified more than 100 genomic loci that are significantly related to schizophrenia.

“Our findings include molecules that are currently the most promising targets for therapeutics and point to molecular systems aligning with the predominant theories on factors causing schizophrenia,” states Bertram Müller-Myhsok. “This might suggest that the many novel findings we report also provide a relevant foundation for treatment development studies.”

Particularly variations in genes related to altered glutamatergic synaptic and calcium channel function might serve as a panel of biomarkers for future diagnosis of schizophrenia or might allow better understanding of the molecular mechanisms underlying the disease.

Such associations with genes playing a role in the central nervous system are most relevant for the development of treatment strategies. The results of the study verified genetic associations with the gene coding for the type 2 dopaminergic receptor (DRD2).

“All available antipsychotic drugs are thought to exert their main therapeutic effects through blockade of DRD2,” explains Bertram Müller-Myhsok. “Since the discovery of this mechanism over 60 years ago, no new antipsychotic drug of proven efficacy has been developed based on other target molecules.” Thus, therapeutic stasis is in large part a consequence of the fact that the disease-causing mechanisms are still unknown. Identifying the causes of schizophrenia is therefore a critical step towards improving treatment and outcome for patients suffering from this disorder.


Dr. Bertram Müller-Myhsok

Max Planck Institute of Psychiatry, München

Phone: +49 89 30622-246


Anna Niedl

Press and Public Relations

Max Planck Institute of Psychiatry, München

Phone: +49 89 30622-263
Fax: +49 89 30622-370


Original publication

Schizophrenia Working Group of the Psychiatric Genomics Consortium.
Biological insights from 108 schizophrenia-associated genetic loci.
Nature, 22. Juli 2014 (doi:10.1038/nature13595)AN/HR

Dr. Bertram Müller-Myhsok | Max-Planck-Institute

Further reports about: Psychiatry biomarkers disorder findings mechanisms schizophrenia therapeutic

More articles from Life Sciences:

nachricht Molecular trigger for Cerebral Cavernous Malformation identified
26.11.2015 | EMBO - excellence in life sciences

nachricht Peering into cell structures where neurodiseases emerge
26.11.2015 | University of Delaware

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Using sphere packing models to explain the structure of forests

26.11.2015 | Ecology, The Environment and Conservation

Dimensionality transition in a newly created material

26.11.2015 | Materials Sciences

Revealing glacier flow with animated satellite images

26.11.2015 | Earth Sciences

More VideoLinks >>>