Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Fast Magnetic Fix for Sepsis?

27.03.2009
An innovative new device created by researcher's at Children's Hospital Boston uses magnetism to quickly pull disease pathogens out of an infected bloodstream. The device could become a first-line defense for blood infections like sepsis, which causes over 200,000 deaths in the US per year.

Sepsis, an infection of the blood, can quickly overwhelm the body’s defenses and is responsible for more than 200,000 deaths per year in the U.S. alone.

Premature newborns and people with weakened immune systems are especially vulnerable. Since most existing treatments are ineffective, researchers in the Vascular Biology Program at Children’s Hospital Boston have come up with a first line of defense -- using magnetism to quickly pull pathogens out of the blood.

Their blood-cleansing device, developed by Chong Wing Yung, PhD, a researcher in the laboratory of Don Ingber, MD, PhD, is described in the journal Lab on a Chip. (The article can be accessed at http://www.rsc.org/publishing/journals/LC/article.asp?doi=B816986A, and is scheduled for formal online publication on April 13).

The system they envision will work like this: The patient’s blood is drawn, and tiny magnetic beads, pre-coated with antibodies against specific pathogens (such as the fungus Candida albicans) are added. The blood is then run through a microfluidic system in which two liquid flow streams run side by side without mixing -- one containing blood, the other a saline-based collection fluid. The beads bind to the pathogens, and a magnet then pulls them (along with the pathogens) into the collection fluid, which is ultimately discarded, while the cleansed blood in reintroduced into the patient.

Tested with contaminated human blood, a device with four parallel collection modules achieved over 80 percent clearance of fungi in a single pass, at a flow rate and separation efficiency that would be viable for clinical applications. Yung and Ingber estimate that a scaled-up system with hundreds of channels could cleanse the blood of an infant within several hours.

”This blood-cleansing microdevice offers a potentially new weapon to fight pathogens in septic infants and adults, that works simply by removing the source of the infection and thereby enhancing the patient’s response to existing antibiotics,” says Ingber.

Yung, Ingber and physicians Mark Puder, MD, PhD, and Jay Wilson, MD from the Department of Surgery at Children’s Hospital Boston, with collaborators from Draper Laboratories, recently won a $500,000 grant from the Center for Integration of Medicine and Innovative Technology (CIMIT) to further the work. The next phase will be to test the device in an animal model.

The study was funded by CIMIT, with additional resources from Harvard University's Center for Nanoscale Systems (CNS) and the National Nanotechnology Infrastructure Network (NNIN) initiative. The article can be accessed at: http://www.rsc.org/publishing/journals/LC/article.asp?doi=B816986A.

Children’s Hospital Boston is home to the world’s largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 11 members of the Institute of Medicine and 13 members of the Howard Hughes Medical Institute comprise Children’s research community. Founded as a 20-bed hospital for children, Children’s Hospital Boston today is a 397-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children’s also is the primary pediatric teaching affiliate of Harvard Medical School.

Jamie Newton | Newswise Science News
Further information:
http://www.childrens.harvard.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>