Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A double ring ceremony prepares telomerase RNA to wed its protein partner

26.03.2012
Few molecules are more interesting than DNA—except of course RNA. After two decades of research, that "other macromolecule" is no longer considered a mere messenger between glamorous DNA and protein-synthesizing machines. We now know that RNA has been leading a secret life, regulating gene expression and partnering with proteins to form catalytic ribonucleoprotein (RNP) complexes.

One of those RNPs is telomerase, an enzyme that maintains chromosome integrity. In the March 25, 2012, advance online edition of Nature, researchers at the Stowers Institute for Medical Research report how the RNA TER1, a component of telomerase, is sculpted to favor interaction with its protein partner. Two ring-like proteins sequentially slip onto unprocessed TER1 RNA and hold it while it is clipped to the optimum size, folded, and capped.

That processing is essential: without it TER1 could not engage its protein partner to form the active telomerase RNP. The finding not only deepens our understanding of RNA biochemistry but also suggests novel pharmaceutical approaches to cancer and diseases of aging.

"Cancer cells are exquisitely dependent on telomerase," says Stowers associate investigator and Howard Hughes Medical Institute Early Career Scientist Peter Baumann, Ph.D., the study's senior author. "Drugs inhibiting telomerase could be a new class of cancer chemotherapeutics with far fewer side effects than drugs in use." Currently, biotechnology and pharmaceutical companies are actively seeking clinically useful telomerase inhibitors.

Most RNA strands—including the intermediary or "messenger" RNAs—undergo splicing, analogous to editing a film. The universal snipper is a humongous complex called the spliceosome, which usually touches down on an RNA strand, makes two cuts, and then pastes the new ends together. But in a 2008 Nature study, the Baumann group reported a surprising finding. "We showed that the spliceosome acts to process TER1," he says. "But instead of cutting twice and pasting, it made a single cut and stopped."

To determine what restrained the spliceosome from making a second cut, Baumann's group analyzed TER1 RNA in the yeast Schizosaccharomyces pombe. They found that two protein complexes called Sm and Lsm latched onto TER1 RNA in a mutually exclusive fashion as the RNA matures. Interestingly, Lsm-bound TER1 RNA showed the most efficient telomerase activity, hinting that the Sm ring slips on first.

For further analysis they enlisted the aid of Stowers' assistant investigator Marco Blanchette, Ph.D., an RNA splicing expert. The team confirmed that indeed Sm bound immature TER1 RNA, prompting the incoming spliceosome to snip off everything to its "right". Once that cut was made, Sm appeared to promote formation of a protective tri-methylated "cap" on the "left" end of the TER1 transcript, thus stabilizing it. At that point the Sm ring slipped off and was replaced by Lsm, facilitating recruitment of TER1's catalytic protein partner.

This work shows that the marriage of RNA and protein telomerase partners requires a two-step ritual attended first by Sm and then by Lsm proteins. The presence of Lsm in preparations of the active enzyme also suggests that it lingers after the ceremony to protect mature Ter1 RNA from RNA-damaging enzymes.

Determining what the evolutionarily conserved Sm and Lsm proteins do is a significant contribution to RNA biology, says Wen Tang, a graduate student in the Baumann lab who led the study. "People discovered these proteins 20 years ago and knew they were essential for RNA processing," says Tang. "Right now we don't know whether Sm and Lsm participate in processing of telomerase in human cells. Other members of the lab are looking into that."

Understanding how telomerase works in human cells is vital because of its connection to seemingly unrelated diseases. Not only because cancer cells depend on its activity, but in a fascinating "converse", mutations that inactivate telomerase are seen in a degenerative condition called dyskeratosis congenital (DKC), in which patients show signs of premature aging in some organs.

"People have looked for mutations in telomerase components in individuals with DKC and found them in only about half of those patients," says Wen Tang. "This work identifies novel telomerase components that likely affect normal enzyme function." Those components could provide novel targets potentially useful to diagnose or treat DKC.

Baumann agrees that knowing how to tinker with TER1 biogenesis has therapeutic potential in several contexts. But he is equally happy that the new work adds to scientists' appreciation of RNA complexity. "This paper fills in the blanks between transcription of the TER1 RNA subunit and formation of an active telomerase complex," he says. "We also hope it provides a more complete picture of TER1 biogenesis in future textbooks."

Ram Kannan of the Baumann lab also contributed to the paper.

The work was supported in part by the Howard Hughes Medical Institute and the American Heart Association.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife Virginia opened the Institute in 2000. Since then, the Institute has spent over 800 million dollars in pursuit of its mission.

Currently the Institute is home to over 500 researchers and support personnel; over 20 independent research programs; and more than a dozen technology development and core facilities.

Gina Kirchweger | EurekAlert!
Further information:
http://www.stowers.org

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>