Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A deep-sea squid with tentacle tips that "swim" on their own

02.09.2013
Many deep-sea animals such as anglerfish use parts of their body as lures to attract prey. Some deep-sea squids may use this strategy as well.

In a recent paper, researchers associated with the Monterey Bay Aquarium Research Institute (MBARI) describe a deep-sea squid that appears to use a different method to lure prey—its tentacle tips flap and flutter as if swimming on their own. The researchers hypothesize that the motion of these tentacle tips may induce small shrimp and other animals to approach within reach of the squid's arms.


A Grimalditeuthis bonplandi squid with one of its tentacles extended. The arrow points to a small "club" at the end of the tentacle that wiggles and appears to swim independently of the rest of the animal. Image: © 2005 MBARI

Most squids have eight arms and two longer "feeding" tentacles. The tips of the tentacles, which are often broader and armed with suckers or hooks, are known as "clubs." Such squids hunt by rapidly extending their tentacles and then grabbing prey with their clubs. The squids also use the tentacles to carry captured prey to their mouths.

The deep-sea squid Grimalditeuthis bonplandi seems to use a very different feeding strategy. A slow swimmer with a weak, gelatinous body, its tentacles are long, thin, fragile, and too weak to capture prey. Unlike any other known squid, its tentacles do not have any suckers, hooks, or photophores (glowing spots).

Until just a few years ago, the marine biologists had only seen specimens of G. bonplandi that were dead or dying after having been captured in deep-sea trawl nets. However, using video from underwater robots known as remotely operated vehicles (ROVs), the authors of the recent paper were able to study how these squids behave in their native habitat, 1,000 to 2,000 meters (roughly one mile) below the ocean surface.

The lead author of the paper, Henk-Jan Hoving, was a postdoctoral fellow at MBARI from August 2010 until July 2013. He and his coauthors examined video of G. bonplandi taken during an MBARI ROV dive in Monterey Bay. They also analyzed video collected by several oil-industry ROVs in the Gulf of Mexico, as part of the Scientific and Environmental ROV Partnership Using Existing Industrial Technology (SERPENT) project. In addition, the researchers dissected over two dozen preserved squids from various collections.

When the ROVs first approached, most of the squids were hanging motionless in the water with their eight arms spread wide and their two long, thin tentacles dangling below. What intrigued the researchers was that the squids' tentacles did not move on their own, but were propelled by fluttering and flapping motions of thin, fin-like membranes on the clubs. The clubs appeared to swim on their own, with the tentacles trailing behind.

Instead of using its muscles to extend its tentacles, like most squids, G. bonplandi sends its clubs swimming away from its body, dragging the tentacles behind them. After the tentacles are extended, the clubs continue to wiggle independently of the tentacles.

When threatened, instead of retracting its tentacles as most squids would do, G. bonplandi swims down toward its clubs. After swimming alongside its clubs, the squid coils both the tentacles and clubs and hides them within its arms before swimming away.

In short, all of the motions and activities of these squids appear to be directed toward giving the impression that their clubs are small, swimming animals, independent from the rest of the squids' bodies.

The researchers speculate that the motion of the clubs may induce smaller squids and shrimp to approach close enough to be captured by G. bonplandi's arms (the researchers observed remnants of small squids and shrimps in the stomachs of theG. bonplandi that they dissected).

Because G. bonplandi's clubs do not glow, they would be invisible in the inky darkness of the deep sea. However, the researchers proposed several other ways that these "swimming" clubs might attract prey.

One possibility is that the moving clubs could disturb glowing microscopic organisms in the surrounding water, causing the water to glow like a ship's wake during a red-tide bloom. The clubs' swimming motions would also create turbulence or vibrations in the water, which could be detected by their prey. Such vibrations might mimic the vibrations used by prey animals to attract mates. Alternatively, they might be similar to the vibrations created by the even smaller animals eaten by G. bonplandi's prey.

Because Hoving and his coauthors have never actually seen this squid capture prey, they still do not know how exactly G. bonplandi feeds on any animals that it attracts using its "swimming" tentacle tips. But their detailed observations provide yet another example of the improbable survival strategies that have evolved in the often food-limited environment of the deep sea.

Online version of this release:
http://www.mbari.org/news/news_releases/2013/squid-tentacles/grimalditeuthis-release.html
Original journal article:
Hoving, H.J.T., L.D. Zeidberg, M.C. Benfield, S.L. Bush, B.H. Robison, and M. Vecchione.(2013). First in situ observations of the deep-sea squidGrimalditeuthis bonplandi reveal unique use of tentacles. Proceedings of the Royal Society ,B http://dx.doi.org/10.1098/rspb.2013.1463.

Kim Fulton-Bennett | MBARI
Further information:
http://www.mbari.org
http://www.mbari.org/news/news_releases/2013/squid-tentacles/grimalditeuthis-release.html

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>