Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Cancer Gene Keeps Itself in Check

21.02.2011
Cancer can develop when genes get out of control. A feedback mechanism to prevent just that is reported by scientists from the Biozentrum of the University of Würzburg in “Molecular Cell”.

Cancer develops from a disturbed balance between the division, the growth and the death of cells. This is what makes it so difficult to treat this disease: the therapy must not be radical but moderate. The point is not to put out the fire in the house but to keep it in check – to make it burn in the fireplace and nowhere else.


A breast cancer cell (yellow) under the electron microscope. Scientists from the Biozentrum of the University of Würzburg describe in the latest issue of “Molecular Cell” a feedback mechanism that regulates the activity of the Myc cancer gene. Photo: Kristian Pfaller

To make this balancing act in the body work, the first point is to understand the principles of cell growth regulation. Here Theresia Kress from the working group of Professor Martin Eilers at the Biozentrum of the University of Würzburg has made an important discovery: In cooperation with an international team, she has found a feedback mechanism that adjusts the activity of the growth-inducing Myc “cancer gene” at the right level. This mechanism may play an important role in the development of colon cancer.

How the Myc “cancer gene” works

The Myc gene produces the so-called Myc transcription factor, which regulates a multitude of other genes and thus drives the growth and reproduction of cells. When the Myc gene gets out of control, it allows cell growth to run riot – this is why it is referred to as “cancer gene”.

But how does a cell notice whether there is enough Myc? Professor Eilers and his team had their sights on a specific type of enzyme, the so-called protein kinases, as a possible signal transmitter. So Theresia Kress deactivated all these kinases one by one and examined what happened then.

Proof of an inhibiting molecule

The strategy had success: The researchers found out that it is the protein kinase MK5 that inhibits the activity of Myc, and thus keeps cell growth in check. They also discovered how Myc inhibition works in detail, and which other genes and molecules are involved.

But most important of all, Kress and Eilers could demonstrate that the protein kinase is in turn activated by Myc. So the feedback comes full circle: the higher the level of growth-inducing Myc in the cell, the higher the production of the inhibitor – in this way Myc keeps itself in check, and the rate of cell growth remains in balance.

A further examination revealed that it is exactly this feedback mechanism which is blocked out in colon cancer cells. Now this could be one of the causes for the development of cancer, and thus a possible starting point for therapy.

Published in “Molecular Cell”

The results are described in detail in the latest issue of the renowned journal “Molecular Cell”. The work was in the context of the Growthstop research project, which is sponsored by the European Union and coordinated by the Innsbruck-based project management firm CEMIT.

The EU Growthstop Project

Growthstop is a research project of the 6th European Research Framework Programme (FP6). Its aim is the identification, development and validation of new therapeutics to induce a programmed cell death in tumors. The consortion has twelve members from Austria, Germany, Israel, UK, Spain and Hungary. It is headed by Professor Lukas A. Huber, director of the Biozentrum of the Medical University of Innsbruck. The project started in 2006 and is scheduled to continue until mid-2011.

Contact

Prof. Dr. Martin Eilers, Biozentrum of the University of Würzburg,
phone (+49-931) 31-84111, martin.eilers@biozentrum.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: Cancer Molecular Cell cancer gene cell growth colon cancer protein kinase

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>