Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Cancer Gene Keeps Itself in Check

21.02.2011
Cancer can develop when genes get out of control. A feedback mechanism to prevent just that is reported by scientists from the Biozentrum of the University of Würzburg in “Molecular Cell”.

Cancer develops from a disturbed balance between the division, the growth and the death of cells. This is what makes it so difficult to treat this disease: the therapy must not be radical but moderate. The point is not to put out the fire in the house but to keep it in check – to make it burn in the fireplace and nowhere else.


A breast cancer cell (yellow) under the electron microscope. Scientists from the Biozentrum of the University of Würzburg describe in the latest issue of “Molecular Cell” a feedback mechanism that regulates the activity of the Myc cancer gene. Photo: Kristian Pfaller

To make this balancing act in the body work, the first point is to understand the principles of cell growth regulation. Here Theresia Kress from the working group of Professor Martin Eilers at the Biozentrum of the University of Würzburg has made an important discovery: In cooperation with an international team, she has found a feedback mechanism that adjusts the activity of the growth-inducing Myc “cancer gene” at the right level. This mechanism may play an important role in the development of colon cancer.

How the Myc “cancer gene” works

The Myc gene produces the so-called Myc transcription factor, which regulates a multitude of other genes and thus drives the growth and reproduction of cells. When the Myc gene gets out of control, it allows cell growth to run riot – this is why it is referred to as “cancer gene”.

But how does a cell notice whether there is enough Myc? Professor Eilers and his team had their sights on a specific type of enzyme, the so-called protein kinases, as a possible signal transmitter. So Theresia Kress deactivated all these kinases one by one and examined what happened then.

Proof of an inhibiting molecule

The strategy had success: The researchers found out that it is the protein kinase MK5 that inhibits the activity of Myc, and thus keeps cell growth in check. They also discovered how Myc inhibition works in detail, and which other genes and molecules are involved.

But most important of all, Kress and Eilers could demonstrate that the protein kinase is in turn activated by Myc. So the feedback comes full circle: the higher the level of growth-inducing Myc in the cell, the higher the production of the inhibitor – in this way Myc keeps itself in check, and the rate of cell growth remains in balance.

A further examination revealed that it is exactly this feedback mechanism which is blocked out in colon cancer cells. Now this could be one of the causes for the development of cancer, and thus a possible starting point for therapy.

Published in “Molecular Cell”

The results are described in detail in the latest issue of the renowned journal “Molecular Cell”. The work was in the context of the Growthstop research project, which is sponsored by the European Union and coordinated by the Innsbruck-based project management firm CEMIT.

The EU Growthstop Project

Growthstop is a research project of the 6th European Research Framework Programme (FP6). Its aim is the identification, development and validation of new therapeutics to induce a programmed cell death in tumors. The consortion has twelve members from Austria, Germany, Israel, UK, Spain and Hungary. It is headed by Professor Lukas A. Huber, director of the Biozentrum of the Medical University of Innsbruck. The project started in 2006 and is scheduled to continue until mid-2011.

Contact

Prof. Dr. Martin Eilers, Biozentrum of the University of Würzburg,
phone (+49-931) 31-84111, martin.eilers@biozentrum.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: Cancer Molecular Cell cancer gene cell growth colon cancer protein kinase

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>