Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


£2 million study to reveal workings of dementia genes

University of Manchester scientists are to investigate the biological causes of the second most common form of dementia after Alzheimer’s, thanks to a prestigious £1.9 million senior fellowship award from the Medical Research Council.

Frontotemporal lobar degeneration (FTLD) is a group of dementias that affect the frontal and temporal lobes of the brain and are characterised by behaviour and language dysfunction, rather than the memory loss associated with Alzheimer’s disease (AD).

FTLD, which affects about 50,000 people in the UK, also differs from AD in that it targets younger people: FTLD sufferers are usually in their 50s or 60s, although people as young as their 20s have also fallen victim to FTLD. AD sufferers tend to be older.

“Alzheimer’s patients lose their awareness of space and time, whereas FTLD can result in changes in personality as well as speech and language difficulties,” said Dr Stuart Pickering-Brown, who is leading the research.

“Sufferers can become apathetic or exhibit behaviour at the other extreme and lose normal social values which lead them to act inappropriately.

“Speech and language difficulties fall into two main types: sufferers can develop problems with grammar and pronunciation or have semantic dementia where they lose the information content of language.

Errors in two genes – tau and progranulin – have been identified as causes for FTLD but these only account for 10% of cases. The University of Manchester team plan to investigate the role other genes may play in the disease.

“Our research suggests other genes may be important in regulating the amount of tau and progranulin in the brain,” said Dr Pickering-Brown, who is based in the School of Translational Medicine.

“Progranulin is associated with wound healing and little is known about its function in the brain, so we now plan to study the effects of progranulin on cells and explore how it is affected by other genes.”

At the end of the five year study, the team hope to have a much clearer understanding of the genetic causes underlying FTLD.

“Understanding the biological problems that lead to FTLD will help in diagnosing the condition and ultimately allow us to find future therapies for patients.”

Aeron Haworth | alfa
Further information:

Further reports about: Alzheimer Dysfunction FTLD Tau dementia dementia genes genes progranulin

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>