Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Nanosponge vaccine' fights MRSA toxins

02.12.2013
Nanosponges that soak up a dangerous pore-forming toxin produced by MRSA (methicillin-resistant Staphylococcus aureus) could serve as a safe and effective vaccine against this toxin.

This "nanosponge vaccine" enabled the immune systems of mice to block the adverse effects of the alpha-haemolysin toxin from MRSA—both within the bloodstream and on the skin. Nanoengineers from the University of California, San Diego described the safety and efficacy of this nanosponge vaccine in the December 1 issue of Nature Nanotechnology.


The glowing yellow specks in the image show uptake of the nanosponge vaccine by a mouse dendritic cell -- an immune-system cell. The detained alpha-haemolysin toxins were labeled with a fluorescent dye which glows yellow. The nanosponge vaccine with detained toxins and can be seen glowing yellow after uptake by the dendritic cell. The cell is membrane stained red and the nuclei stained blue.

Nanosponges that soak up a dangerous pore-forming toxin produced by MRSA (methicillin-resistant Staphylococcus aureus) could serve as a safe and effective vaccine against this toxin. This "nanosponge vaccine" enabled the immune systems of mice to block the adverse effects of the alpha-haemolysin toxin from MRSA -- both within the bloodstream and on the skin. Nanoengineers from UC San Diego described the safety and efficacy of this nanosponge vaccine in the Dec. 1 issue of Nature Nanotechnology.

Credit: UC San Diego Department of NanoEngineering


The nanosponges at the foundation of the experimental "toxoid vaccine" platform are bio-compatible particles made of a polymer core (light-blue-green color) wrapped in a red-blood-cell membrane (orange). Each nanosponge's red-blood-cell membrane seizes and detains the Staphylococcus aureus (staph) toxin alpha-haemolysin (blue) without compromising the toxin’s structural integrity through heating or chemical processing. These toxin-studded nanosponges served as vaccines capable of triggering neutralizing antibodies and fighting off otherwise lethal doses of the toxin in mice.

Nanosponges that soak up a dangerous pore-forming toxin produced by MRSA (methicillin-resistant Staphylococcus aureus) could serve as a safe and effective vaccine against this toxin. This "nanosponge vaccine" enabled the immune systems of mice to block the adverse effects of the alpha-haemolysin toxin from MRSA -- both within the bloodstream and on the skin. Nanoengineers from UC San Diego described the safety and efficacy of this nanosponge vaccine in the Dec. 1 issue of Nature Nanotechnology.

Credit: UC San Diego Department of NanoEngineering

The nanosponges at the foundation of the experimental "toxoid vaccine" platform are bio-compatible particles made of a polymer core wrapped in a red-blood-cell membrane. Each nanosponge's red-blood-cell membrane seizes and detains the Staphylococcus aureus (staph) toxin alpha-haemolysin without compromising the toxin's structural integrity through heating or chemical processing. These toxin-studded nanosponges served as vaccines capable of triggering neutralizing antibodies and fighting off otherwise lethal doses of the toxin in mice.

Toxoid vaccines protect against a toxin or set of toxins, rather than the organism that produces the toxin(s). As the problem of antibiotic resistance worsens, toxoid vaccines offer a promising approach to fight infections without reliance on antibiotics.

"With our toxoid vaccine, we don't have to worry about antibiotic resistance. We directly target the alpha-haemolysin toxin," said Liangfang Zhang, a nanoengineering professor at UC San Diego Jacobs School of Engineering and the senior author on the paper. Targeting the alpha-haemolysin toxin directly has another perk. "These toxins create a toxic environment that serves as a defense mechanism which makes it harder for the immune system to fight Staph bacteria," explained Zhang.

Beyond MRSA and other staph infections, the nanosponge vaccine approach could be used to create vaccines that protect against a wide range of toxins, including those produced by E. coli and H. pylori.

This work from Zhang's Nanomaterials and Nanomedicine Laboratory at the UC San Diego included nanoengineering post-doctoral researcher Che-Ming "Jack" Hu, nanoengineering graduate student Ronnie Fang, and bioengineering graduate student Brian Luk.

The researchers found that their nanosponge vaccine was safe and more effective than toxoid vaccines made from heat-treated staph toxin. After one injection, just 10 percent of staph-infected mice treated with the heated version survived, compared to 50 percent for those who received the nanosponge vaccine. With two more booster shots, survival rates with the nanosponge vaccine were up to 100 percent, compared to 90 percent with the heat-treated toxin.

"The nanosponge vaccine was also able to completely prevent the toxin's damages in the skin, where MRSA infections frequently take place," said Zhang, who is also affiliated with the Moores Cancer Center at UC San Diego.

Fighting Pore-Forming Toxins

This work is a twist on a project the UC San Diego nanoengineers presented earlier this year: a nanosponge that can sop up a variety of pore-forming toxins—from bacterial proteins to snake venom—in the body.

Pore-forming toxins work by punching holes in a cell's membrane and letting the cell essentially leak to death. But when toxins attack the red blood cell membrane draped over the nanoparticle, "nothing will happen. It just locks the toxin there," Zhang explained.

The nanoengineers wondered what would happen if they loaded one of their nanosponges with staph toxin in this way, and presented the whole package to an essential part of the immune system called dendritic cells. Could the loaded particles trigger an immune response and work as a toxoid vaccine?

Staph toxin is so powerful that it kills immune cells in its unaltered form. Most vaccine candidates, therefore, use a heat or chemically processed version of the toxin that unravels some of its proteins and makes it a little weaker. But this process also makes the immune response to the toxin a little weaker.

"The more you heat it, the safer the toxin is, but the more you heat it, the more you damage the structure of the protein," Zhang explained. "And this structure is what the immune cell recognizes, and builds its antibodies against."

The nanosponge toxoid vaccine gets around this problem by detaining—but not changing—the staph toxin. Like a dangerous but handcuffed prisoner, the staph toxin can be led to the dendritic cells of the immune system without causing any harm.

Before this, "there was no way you could deliver a native toxin to the immune cells without damaging the cells," Zhang said. "But this technology allows us to do this."

Each vaccine particle is approximately 85 nanometers in diameter; for comparison, about 1000 of them would fit across the width of a single human hair. They are cleared from the body after injection in about two weeks, the researchers found.

Staphylococcus aureus

Staph bacteria are one of the most common causes of skin infections, and can cause blood poisoning and surgical infections as well as pneumonia. According to the Centers for Disease Control and Prevention, about 80,000 Americans suffer from invasive MRSA infections each year, and over 11,000 of those individuals die. At the moment, there are no vaccines approved to protect humans against the toxins associated with staph infections, including those caused by MRSA strains.

The idea for a staph vaccine came about when the researchers considered the success of their nanosponge. If the particle was so good at collecting toxins, they wondered, what were the potential uses of a particle full of toxin? "To be honest, we never thought about the vaccine use from the beginning," Zhang noted. "But when we do research, we always want to look at a problem in reverse."

In a way, the toxoid vaccine hearkens back to their first use for the particles, as a cancer drug delivery device, Zhang noted.

The particles "work so beautifully," Zhang said, that it might be possible to detain several toxins at once on them, creating "one vaccine against many types of pore-forming toxins," from staph to snake venom.

The research was funded by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (award no. R01DK095168) and by the National Science Foundation (grant DMR-1216461).

"Nanoparticle-detained toxins for safe and effective vaccination," by Che-Ming J. Hu, Ronnie H. Fang and Liangfang Zhang in the Department of NanoEngineering at the University of California, San Diego; and Brian T. Luk in the Department of Bioengineering at the University of California, San Diego.

Daniel Kane | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>