Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Despair' Gene May Link to Mood Disorders

A gene in the brain that was not previously linked to mood disorders could have a role in biopolar, depression, and schizophrenic conditions.

Pharmacy scientists at the University of Maryland, Baltimore (UMB) have identified antidepressant and anti-anxiety behaviors in tests of mice lacking the gene.

Writing in the journal BMC Neuroscience, Elisabeth Barbier, PhD, postdoctoral fellow at the School of Pharmacy, and Jia Bei Wang, PhD, professor at the School, concluded after running a battery of standard behavioral tests on the mice without the PKCI/HINT1 gene that it may have an important role in mood regulation.

Mice in the study that had what is being called the “despair” gene eventually gave up trying to avoid apparent danger in tests involving swimming or exposure to light—conditions disliked by mice. Mice without the gene kept trying to escape from danger, perhaps abnormally.

“The knockout mice [without the gene] displayed behaviors indicative of changes in mood function, such as increased perseverance and reduced anxiety in open spaces,“ Wang said.

The causes of mood dysfunction, as seen in depressive and bipolar disorders, are still not fully understood. They are believed to be multifactorial and involve heredity, changes in neurotransmitter levels, altered neuroendocrine function, and psychosocial factors.

“We don’t yet know why the deletion of the gene altered the mood status of the mice,” says Wang, a neuroscientist. She says the protein encoded by the gene could be a potential target for development of diagnostic or therapeutic agents that one day might be used for depression, bipolar disorders or schizophrenia. In addition, the knockout mice might be useful as models to study mania. Currently no mania animal model is available.

The researchers discovered the gene while studying the biological receptors in brain cells that respond to opioid drugs. “I thought [such a] receptor can’t be making the entire change in the body. There must be other proteins,” Wang says. The scientists learned that the gene had already been cloned at Columbia University in the City of New York, where medical researchers were studying its possible role in cancer.

Five years ago, Wang searched scientific literature and found no psychological function for the gene, although it is concentrated in the brain. But she was convinced of its importance because the protein for the gene appears in the genome of living things all along the evolutionary spectrum—from bacteria and fungi to worms to humans. “It must be important. It must be essential otherwise why would all these creatures have it?” Wang says.

Also significant, she says, is that other studies have shown that cadavers of people with biopolar and schizophrenia disorders had less protein encoded by the gene in their brains.

By screening large libraries of chemicals, Wang will next search for compounds that may induce changes in the protein of the gene.

Meanwhile, she says, “We are showing the scientific community that this is an important protein that may have something to do with schizophrenia, bipolar [disorders], and depression. But we don’t know how it works. Certainly this opens the door for work on discovering the mechanism, how it changes behavior. This is the first paper to show that this protein is important to these conditions.”

Wang adds that the work may also provide some clue about the pathological basis of schizophrenia and bipolar conditions—or, as she says, “just what happens to those patients.”

According to the February 2008 issue of the journal PLoS Medicine, more prescriptions in 2007 were dispensed for antidepressants—232.7 million nationwide—than for drugs of any other type. U.S. sales of antidepressants totaled $11.9 billion, according to data from IMS Health, Inc.

Steve Berberich | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>