Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ultra-fast, the bionic arm can catch objects on the fly


Robot developed by EPFL researchers is capable of reacting on the spot and grasping objects with complex shapes and trajectories in less than five-hundredths of a second

With its palm open, the robot is completely motionless. A split second later, it suddenly unwinds and catches all sorts of flying objects thrown in its direction -a tennis racket, a ball, a bottle-. This arm measures about 1.5 meters long and keeps an upright position.

Photos: ©EPFL

It has three joints and a sophisticated hand with four fingers. It was programmed at the Learning Algorithms and Systems Laboratory at EPFL (LASA) and designed to test robotic solutions for capturing moving objects. It is unique, as it has the ability to catch projectiles of various irregular shapes in less than five hundredths of a second. This invention is described in an article published today by IEEE transactions on robotics, the first journal in the field.

"Increasingly present in our daily lives and used to perform various tasks, robots will be able to either catch or dodge complex objects in full-motion, said Aude Billard, head of LASA. Not only do we need machines able to react on the spot, but also to predict the moving object's dynamics and generate a movement in the opposite direction."

This robotic arm already has a very real potential application in space. It has been associated to the Clean- mE project carried out by the Swiss Space Center at EPFL, which aims to develop technologies for the recovery and disposal of space debris orbiting around Earth. Fitted on a satellite, the arm would have the task of catching flying debris, whose dynamics are only partially known. Hence, the robot will not be able to work out such dynamics with precision until in space, by observing the movement of the approaching objects.


The ability to catch flying things requires the integration of several parameters and reacting to unforeseen events in record time. "Today's machines are often pre-programmed and cannot quickly assimilate data changes, added Aude Billard. Consequently, their only choice is to recalculate the trajectories, which requires too much time from them in situations in which every fraction of a second can be decisive."

To obtain the desired speed and adaptability, LASA researchers were inspired by the way humans themselves learn: by imitation and trial and error. This technique, called Programming by demonstration, does not give specific directions to the robot. Instead, it shows examples of possible trajectories to it. It consists in manually guiding the arm to the projected target and repeating this exercise several times.

The research was conducted with a ball, an empty bottle, a half full bottle, a hammer and a tennis racket. These five common objects were selected because they offer a varied range of situations in which the part of the object that the robot has to catch (the handle of the racket, for example) does not correspond to its center of gravity. The case of the bottle even offers an additional challenge since its center of gravity moves several times during its trajectory. When projected into the air, all these items will make even more complex movements, often involving several axes. As a result, when the moving objects are submitted to the robot's abilities, the outcomes turn out quite interesting.

In the first learning phase, objects are thrown several times in the robot's direction. Through a series of cameras located all around it, the robot creates a model for the objects' kinetics based on their trajectories, speeds and rotational movement. Scientists translate it into an equation which then allows the robot to position itself very quickly in the right direction whenever an object is thrown. During the few milliseconds of the approach, the machine refines and corrects the trajectory for a real-time and high precision capture. This efficiency is further enhanced by the development of controllers that couple and synchronize the movements of the hand and fingers.


Press material:

Press Kit (broadcast video & broll, pictures):
Youtube video:
Photos: ©EPFL

Researchers contacts:

Aude Billard, Learning algorithms and systems Laboratory EPFL: email, tel: +41 21 693 54 64.

Ashwini Shukla, assistant-doctorant, LASA: email, tel: +41 21 693 69 47, cell +41 78 693 66 57.

Seungsu Kim, assistant-doctorant, LASA: email, tel: +41 21 69 35463, cell +41 79 261 65 78.

Media contact:

Sarah Perrin, scientific editor at EPFL: email, tel: +41 21 693 21 07.

Hillary sanctuary, EPFL Media Relations,, +41 21 693 70 22, cell: +41 79 703 48 09

Sarah Perrin | Eurek Alert!

Further reports about: EPFL Ecole Laboratory Polytechnique fingers fly gravity movement movements

More articles from Interdisciplinary Research:

nachricht New interdisciplinary collaborative research project on the long-term effects of cancer treatment
27.10.2015 | Johannes Gutenberg-Universität Mainz

nachricht Physicists shrink particle accelerator
06.10.2015 | Deutsches Elektronen-Synchrotron DESY

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Harnessing a peptide holds promise for increasing crop yields without more fertilizer

25.11.2015 | Agricultural and Forestry Science

Earth's magnetic field is not about to flip

25.11.2015 | Earth Sciences

Tracking down the 'missing' carbon from the Martian atmosphere

25.11.2015 | Physics and Astronomy

More VideoLinks >>>