Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stingray movement could inspire the next generation of submarines

14.11.2013
The fish's unique way of swimming could improve deep-sea vehicles' agility and fuel efficiency

Stingrays swim through water with such ease that researchers from the University at Buffalo and Harvard University are studying how their movements could be used to design more agile and fuel-efficient unmanned underwater vehicles.


Richard Bottom, left, and Iman Borazjani hope their research on how stingrays swim will lead to the design of new underwater vehicles. (Photo: Douglas Levere)

The vehicles could allow researchers to more efficiently study the mostly unexplored ocean depths, and they could also serve during clean up or rescue efforts.

“Most fish wag their tails to swim. A stingray's swimming is much more unique, like a flag in the wind,” says Richard Bottom, a UB mechanical engineering graduate student participating in the research.

Bottom and Iman Borazjani, UB assistant professor of mechanical and aerospace engineering, set out to investigate the form-function relationship of the stingray — why it looks the way it does and what it gets from moving the way it does.

They will explain their findings at the 66th Annual Meeting of the American Physical Society Division of Fluid Dynamics. Their lecture, “Biofluids: Locomotion III – Flying,” is at 4:45 p.m. on Sunday, Nov. 24, in Pittsburgh, Pa.

The researchers used computational fluid dynamics, which employs algorithms to solve problems that involve fluid flows, to map the flow of water and the vortices around live stingrays.

The study is believed to be the first time the leading-edge vortex, the vortex at the front of an object in motion, has been studied in underwater locomotion, says Borazjani. The leading-edge vortex has been observed in the flight of birds and insects, and is one of the most important thrust enhancement mechanics in insect flight.

The vortices on the waves of the stingrays’ bodies cause favorable pressure fields — low pressure on the front and high pressure on the back — which push the ray forward. Because movement through air and water are similar, understanding vortices are critical.

“By looking at nature, we can learn from it and come up with new designs for cars, planes and submarines,” says Borazjani. “But we’re not just mimicking nature. We want to understand the underlying physics for future use in engineering or central designs.”

Studies have already proven that stingray motion closely resembles the most optimal swimming gait, says Bottom. Much of this is due to the stingray’s unique flat and round shape, which allows them to easily glide through water.

Borazjani and Bottom plan to continue their research and study the differences in movement among several types of rays.

Marcene Robinson
Media Relations Assistant
Tel: 716-645-4595
marcener@buffalo.edu

Marcene Robinson | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Interdisciplinary Research:

nachricht Many muons: Imaging the underground with help from the cosmos
19.12.2016 | DOE/Pacific Northwest National Laboratory

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>