Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers measure photonic interactions at the atomic level

31.08.2012
By measuring the unique properties of light on the scale of a single atom, researchers from Duke University and Imperial College, London, believe that they have characterized the limits of metal's ability in devices that enhance light.

This field is known as plasmonics because scientists are trying to take advantage of plasmons, electrons that have been "excited" by light in a phenomenon that produces electromagnetic field enhancement. The enhancement achieved by metals at the nanoscale is significantly higher than that achievable with any other material.


This is an artistic representation of the film-nanoparticle plasmonic system. Spherical gold nanoparticles are coupled to a gold film substrate by means of an ultrathin layer that forbids the particles from directly touching the film. Electromagnetic ultra-hot spots are excited in the gaps. The system enables the science of light on a scale of a few tenths of a nanometer, the diameter of a typical atom.

Credit: Sebastian Nicosia and Cristian Ciracì

Until now, researchers have been unable to quantify plasmonic interactions at very small sizes, and thus have been unable to quantify the practical limitations of light enhancement. This new knowledge gives them a roadmap for precisely controlling light scattering that should help in the development of devices, such as medical sensors and integrated photonic communications components.

Typically, plasmonic devices involve the interactions of electrons between two metal particles separated by a very short distance. For the past 40 years, scientists have been trying to figure out what happens when these particles are brought closer and closer, at sub-nanometer distances.

"We were able to demonstrate the accuracy of our model by studying the optical scattering from gold nanoparticles interacting with a gold film," said Cristian Ciracì, postdoctoral researcher at Duke's Pratt School of Engineering. "Our results provide a strong experimental support in setting an upper limit to the maximum field enhancement achievable with plasmonic systems."

The results of the experiments, which were conducted in the laboratory of David R. Smith, William Bevan Professor of electrical and computer engineering at Duke, appear on the cover of Science, Aug. 31, 2012.

Ciracì and his team started with a thin gold film coated with an ultra-thin monolayer of organic molecules, studded with precisely controllable carbon chains. Nanometric gold spheres were dispersed on top of the monolayer. Essential to the experiment was that the distance between the spheres and the film could be adjusted with a precision of a single atom. In this fashion, the researchers were able to overcome the limitations of traditional approaches and obtain a photonic signature with atom-level resolution.

"Once you know maximum field enhancement, you can then figure out the efficiencies of any plasmonic system," Smith said. "It also allows us to 'tune' the plasmonic system to get exact predictable enhancements, now that we know what is happening at the atomic level. Control over this phenomenon has deep ramifications for nonlinear and quantum optics."

The Duke team worked with colleagues at Imperial College, specifically Sir John Pendry, who has long collaborated with Smith.

"This paper takes experiment beyond nano and explores the science of light on a scale of a few tenths of a nanometer, the diameter of a typical atom," said Pendry, physicist and co-director of the Centre for Plasmonics and Metamaterials at Imperial College. "We hope to exploit this advance to enable photons, normally a few hundred nanometers in size, to interact intensely with atoms which are a thousand times smaller."

The research was supported by the Air Force Office of Scientific Research and by the Army Research Office's Multidisciplinary University Research Initiative (MURI).

The other members of the team were Duke's Ryan Hill, Jack Mock, Yaroslav Urzhumov and Ashutosh Chilkoti; and from Imperial College, Antonio Fernández-Domínguez and Stefan Maier.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>