Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Launch of Ariadna to boost advanced space research in Europe

13.10.2003


Will spacecraft travelling through interplanetary space be able to determine their positions by using signals from dead stars as astronomical clocks?



What is the likelihood of artificial muscles made from electro-active polymers replacing mechanical parts in spacecraft? Will it ever be possible to conceive an interstellar highway in which spacecraft journey across the galaxy using the delicate gravitational balance between neighbouring stars?

These are just some of the imaginative, futuristic concepts that will be studied in the first call for proposals issued under a new European Space Agency (ESA) initiative named Ariadna.


Managed by the Advanced Concepts Team (ACT) on behalf of the Agency’s Advanced Concepts and Studies Office, Ariadna will further strengthen the existing links between ESA and the European academic community.

Not only will Ariadna enhance opportunities for cooperation and exchange of information between ESA, universities and research institutes, but it will also enable ESA to become even more involved in ground-breaking research than in the past, becoming an equal partner as much as possible, rather than a mere supervisor.

"In the Advanced Concepts Team we want to devote our time to what we like best: finding out about research being carried out in universities, and carrying out research ourselves," said Andrés Gálvez, head of the Advanced Concepts Team at the European Space Research and Technology Centre (ESTEC) in the Netherlands.

"The easiest way of doing so is by working together in areas of common interest," he added. "Ariadna will help us to achieve these goals, by fostering the free flow of innovative ideas and information between ESA and the academic community."

Ariadna will be devoted to short, inexpensive studies involving research into radical new space technologies. The main areas of interest will be:


Fundamental Physics: Theoretical research into fundamental physical phenomena and exploration of their technological implications in subjects such as gravitational physics and quantum mechanics.
Advanced power systems: Research looking beyond photovoltaic systems (solar cells) into power systems for future space missions. This includes investigation of in-space power production systems for transmission to Earth, such as Solar Power Satellites.
Advanced propulsion: Research into advanced in-space propulsion systems and non-conventional systems for access to orbit.
Mission analysis and design: Development of trajectory design strategies and tools, novel mission and system concepts that could revolutionise the trajectories of spacecraft travelling around the Solar System.
Mathematics and Informatics: Research into advanced computing systems and mathematical tools, with special emphasis on improved mission design, performance and return, and more efficient working methodologies.
Biomimicry: Development of methodologies and solutions to space-related engineering problems through the imitation of plants and animals. This biologically inspired research includes behavioural models, structures and materials, mechanisms and processes, sensors and communications, survivability and adaptability.
To simplify procedures, there will be only three types of study:

a) Fast - lasting up to 2 months, maximum expenditure of EUR 15 000,
b) Medium - lasting up to 4 months, maximum of EUR 25 000,
c) Extended - duration up to 6 months, maximum of EUR 35 000.

A new call for proposals is anticipated about once every six months, after which contracts will be awarded to research institutes and academic departments to perform work directly related to the objectives of the ACT.

Torsten Bondo | ESA
Further information:
http://www.esa.int/export/esaCP/SEMWVE1P4HD_Expanding_0.html

More articles from Interdisciplinary Research:

nachricht Bergamotene - alluring and lethal for Manduca sexta
21.04.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How to color a lizard: From biology to mathematics
13.04.2017 | Université de Genève

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>