Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New simulation shows 9/11 plane crash with scientific detail

11.09.2002


Engineers, computer scientists and graphics technology experts at Purdue University have created the first publicly available simulation that uses scientific principles to study in detail what theoretically happened when the Boeing 757 crashed into the Pentagon last Sept. 11.


This image was taken from a simulation, believed to be the first of its kind, that merges a realistic-looking visualization with a precise, physics-based animation that shows what likely happened to the Pentagon’s steel-reinforced concrete structure when it was hit by the Boeing 757 last Sept. 11. The simulation, created by a team of engineers, computer scientists and graphics technology experts at Purdue University, could be used as a tool for designing critical buildings – such as hospitals or fire stations – to withstand terrorist attacks. This image shows a representation of the aircraft just before impact. (Departments of Computer Sciences and Computer Graphics Technology, Purdue University)


This image, showing a representation of the aircraft shortly after impact, is another realistic-looking graphic from the same simulation. The simulation shows what likely happened to the Pentagon’s steel-reinforced concrete structure when it was hit by the Boeing 757 last Sept. 11. (Departments of Computer Sciences and Computer Graphics Technology, Purdue University)



Researchers said the simulation could be used as a tool for designing critical buildings – such as hospitals and fire stations – to withstand terrorist attacks.

The simulation merges a realistic-looking visualization of the airliner approaching the building with a technical, science-based animation of the plane crashing into the structure.


"This is going to be a tremendous asset," said Mete Sozen, Purdue’s Kettelhut Distinguished Professor of Structural Engineering. "Eventually, I hope this will be expanded into a model that we can use to help design structures to resist severe impact loads.

"Using this simulation I can do the so-called ’what-if’ study, testing hypothetical scenarios before actually building a structure."

The simulation can be recorded on a DVD and played on an ordinary personal computer.

The software tool is unusual because it uses principles of physics to simulate how a plane’s huge mass of fuel and cargo impacts a building. The plane’s structure caused relatively little damage, and the explosion and fire that resulted from the crash also are not likely to have been dominant factors in the disaster, Sozen said.

The model indicates the most critical effects were from the mass moving at high velocity.

"At that speed, the plane itself is like a sausage skin," Sozen said. "It doesn’t have much strength and virtually crumbles on impact."

But the combined mass of everything inside the plane – particularly the large amount of fuel onboard – can be likened to a huge river crashing into the building.

The simulation deals specifically with steel-reinforced concrete buildings, as opposed to skyscrapers like the World Trade Center’s twin towers, in which structural steel provided the required strength and stiffness. Reinforced concrete is inherently fire resistant, unlike structural steel, which is vulnerable to fire and must undergo special fireproofing.

"Because the structural skeleton of the Pentagon had a high level of toughness, it was able to absorb much of the kinetic energy from the impact," said Christoph M. Hoffmann, a professor in the Department of Computer Sciences and at Purdue’s Computing Research Institute.

Sozen created a mathematical model of reinforced concrete columns. The model was then used as a starting point to produce the simulation.

Hoffmann turned Sozen’s model into the simulation by representing the plane and its mass as a mesh of hundreds of thousands of "finite elements," or small squares containing specific physical characteristics.

"What we do is simulate the physics of phenomena and then we visualize what we have calculated from scientific principles as a plausible explanation of what really happened," Hoffmann said. "We hope that through such simulations we can learn from this tragic event how to protect better the lives of our citizens and the civil infrastructure of the nation."

The simulation may be the first of its kind for merging realistic-looking animation with scientifically rigorous computations.

"Most of the computer-simulated crashes you see in movies or on TV are not realistic from the point of view of physics," said Voicu Popescu, an assistant professor of computer science. "They are designed to be spectacular rather than realistic. What hasn’t been done much, or, to our knowledge hasn’t been done at all, is to create a visualization that looks realistic in the sense that you would recognize the Pentagon and the plane and is, at the same time, true to physics."

The mesh of finite elements in the model require that millions of calculations be solved for every second of simulation. Creating only one-tenth of a second of simulation took about 95 hours of computation time on a supercomputer. Researchers originally used a bank of computers and later worked closely with Purdue’s information technology staff to harness IBM supercomputers at Purdue and Indiana University.

"The majority of the work had to do with producing the right models and then setting up the particular mesh so that we could work out accurately how this scenario unfolded," Hoffmann said.

In the simulation, the plane crashes into the building’s concrete support columns, which were reinforced with steel bars. In this simulation the columns were assumed to be "spirally reinforced," a technique popular in the 1940s in which steel bars were wound around columns in a helical shape. The coiled steel provided added strength to the columns and probably is responsible for saving many lives, Sozen said.

The simulation might be especially useful for engineers who are trying to design reinforced concrete structures that better withstand terrorist attacks or accidents involving aircraft crashes.

"Our focus was on modeling the impact effect of the liquid fuel in the tanks of the aircraft – the amount of energy transferred to the building’s structural load-carrying system, which is mainly the reinforced concrete columns, and the condition of those columns after the impact," said Sami Kilic, a civil engineering research associate who specializes in earthquake engineering.

A major challenge has been learning how to combine commercially available software with the special models needed to simulate an airliner hitting a building, Kilic said.

The Purdue team used commercial software that is normally used by auto manufacturers to simulate car crashes. But adapting the software to simulate the plane crash and then combining the realistic-looking graphics with scientific simulation has been especially difficult, Kilic said.

"Integrating these two animations is uncommon," he said. "We are discovering a new territory. We had some interaction with aeronautical engineers, and they had never heard of this kind of a simulation, with an aircraft hitting a building.

"This kind of a structure/aircraft interaction is not done commercially."

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Sources: Mete Sozen, (765) 494-2187, sozen@purdue.edu

Christoph M. Hoffmann, (765) 494-6185, cmh@cs.purdue.edu

Voicu Popescu, (765) 496-7347, popescu@cs.purdue.edu

Sami Kilic, (765) 496-6657, skilic@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>