Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sports Scientists May Hold Key To Solving England`s World Cup Penalty Nightmares

06.06.2002


Research designed to enable a goalkeeper to significantly improve his chance of saving a penalty may help England to banish the penalty shootout nightmares that have dogged the team in major competitions over the past decade.



University of Greenwich sports scientists, working with West Ham United football academy, have completed a study proving that penalty takers subconsciously give readable physical clues to the direction of their penalty kicks. These clues could be used by goalkeepers to improve their chances of saving a penalty, as demonstrated by the study`s goalkeeper guinea
pigs.

"Various angles of a striker`s body were measured when taking a penalty, and two body parts were identified as giving an indication of the direction of shot: shoulder angle and angle of the standing leg," says the report`s authors, Al-Amin Kassam and Dr Mark Goss-Sampson. "Variations in these two body angles revealed which of three areas of the goal (left, right and centre) the ball was being struck towards."



"It is possible to train goalkeepers to read these visual clues in order to improve their penalty saving success rate," continued Al-Amin, "and indeed this is what we did in this study."

A West Ham youth team striker took 46 penalty kicks at a full size empty goal. A video camera was set up behind the goal at a height of six feet (about eye level for the average goalkeeper), which was zoomed in on the striker to mimic what a goalkeeper actually sees. Each penalty kick was recorded and the area of the goal that it entered was noted (left, right and centre).

The film clips for each penalty were relayed to a PC and evaluated by motion analysis software to enable the body angles of the striker to be measured, both during his run-up and as he was about to strike the ball.

Ten goalkeepers were shown the penalty kick video clips, freeze-framed just as the striker was about to kick the ball, and asked to predict which of the three areas of the goal the ball would be struck into. They were then instructed on the best visual cues to look for to try and accurately predict the direction of the penalty. When the goalkeepers were asked to view the penalty kicks once more, their prediction rate improved by around 9%.

"Many goalkeepers rely too much on their gut instinct and non-informative visual clues such as the direction a striker is looking when taking a penalty (strikers frequently disguise the way they are looking in order to confuse a goalkeeper)," said Al-Amin. "This leads to relevant visual clues being obscured, resulting in a misreading of the direction of a penalty taker`s shot."

"If a goalkeeper intensively practises recognising the relevant visual clues given by the striker`s shoulder and standing leg angles, then his reaction to these clues becomes automatic. The goalkeeper`s speed of sensory processing thus increases and the time available to react to the penalty strike is greater, increasing his chances of saving the penalty," said Al-Amin.

"A goalkeeper can further improve his chances by increasing the psychological pressure on a penalty taker, who will already be feeling under pressure from expectant team-mates and the crowd," says Al-Amin. "This can be done by a goalkeeper employing time-wasting tactics, making himself look as large as possible, and moving around sideways on his line in order to confuse the striker as to where he is going to dive."

"Although more research needs to be done in this area, I believe that the results of studies such as this one could help to significantly increase a goalkeeper`s chances of saving a penalty," says Al-Amin. "And a piece of advice to England penalty takers. Hit your penalties as hard as possible, as research indicates that a penalty struck at more than 20 metres per
second stands a greater chance of hitting the back of the net than a slower one, as a goalkeeper has less time to analyse visual clues and react."

Carl Smith | alfa
Further information:
http://www.gre.ac.uk/pr/pressreleases/673.htm

More articles from Interdisciplinary Research:

nachricht Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens
19.10.2017 | University of Illinois College of Engineering

nachricht Scientists develop machine-learning method to predict the behavior of molecules
11.10.2017 | New York University

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>