Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sports Scientists May Hold Key To Solving England`s World Cup Penalty Nightmares


Research designed to enable a goalkeeper to significantly improve his chance of saving a penalty may help England to banish the penalty shootout nightmares that have dogged the team in major competitions over the past decade.

University of Greenwich sports scientists, working with West Ham United football academy, have completed a study proving that penalty takers subconsciously give readable physical clues to the direction of their penalty kicks. These clues could be used by goalkeepers to improve their chances of saving a penalty, as demonstrated by the study`s goalkeeper guinea

"Various angles of a striker`s body were measured when taking a penalty, and two body parts were identified as giving an indication of the direction of shot: shoulder angle and angle of the standing leg," says the report`s authors, Al-Amin Kassam and Dr Mark Goss-Sampson. "Variations in these two body angles revealed which of three areas of the goal (left, right and centre) the ball was being struck towards."

"It is possible to train goalkeepers to read these visual clues in order to improve their penalty saving success rate," continued Al-Amin, "and indeed this is what we did in this study."

A West Ham youth team striker took 46 penalty kicks at a full size empty goal. A video camera was set up behind the goal at a height of six feet (about eye level for the average goalkeeper), which was zoomed in on the striker to mimic what a goalkeeper actually sees. Each penalty kick was recorded and the area of the goal that it entered was noted (left, right and centre).

The film clips for each penalty were relayed to a PC and evaluated by motion analysis software to enable the body angles of the striker to be measured, both during his run-up and as he was about to strike the ball.

Ten goalkeepers were shown the penalty kick video clips, freeze-framed just as the striker was about to kick the ball, and asked to predict which of the three areas of the goal the ball would be struck into. They were then instructed on the best visual cues to look for to try and accurately predict the direction of the penalty. When the goalkeepers were asked to view the penalty kicks once more, their prediction rate improved by around 9%.

"Many goalkeepers rely too much on their gut instinct and non-informative visual clues such as the direction a striker is looking when taking a penalty (strikers frequently disguise the way they are looking in order to confuse a goalkeeper)," said Al-Amin. "This leads to relevant visual clues being obscured, resulting in a misreading of the direction of a penalty taker`s shot."

"If a goalkeeper intensively practises recognising the relevant visual clues given by the striker`s shoulder and standing leg angles, then his reaction to these clues becomes automatic. The goalkeeper`s speed of sensory processing thus increases and the time available to react to the penalty strike is greater, increasing his chances of saving the penalty," said Al-Amin.

"A goalkeeper can further improve his chances by increasing the psychological pressure on a penalty taker, who will already be feeling under pressure from expectant team-mates and the crowd," says Al-Amin. "This can be done by a goalkeeper employing time-wasting tactics, making himself look as large as possible, and moving around sideways on his line in order to confuse the striker as to where he is going to dive."

"Although more research needs to be done in this area, I believe that the results of studies such as this one could help to significantly increase a goalkeeper`s chances of saving a penalty," says Al-Amin. "And a piece of advice to England penalty takers. Hit your penalties as hard as possible, as research indicates that a penalty struck at more than 20 metres per
second stands a greater chance of hitting the back of the net than a slower one, as a goalkeeper has less time to analyse visual clues and react."

Carl Smith | alfa
Further information:

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>