Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Out of the Gait: Cornell’s Robot Ranger Sets Untethered ‘Walking’ Record at 14.3 Miles

21.07.2010
The loneliness of the long-distance robot: A Cornell University robot named Ranger walked 14.3 miles in about 11 hours, setting an unofficial world record at Cornell’s Barton Hall early on July 6. A human – armed with nothing more than a standard remote control for toys – steered the untethered robot.

Ranger navigated 108.5 times around the indoor track in Cornell’s Barton Hall – about 212 meters per lap, and made about 70,000 steps before it had a stop and recharge.

The 14.3-mile record beats the former world record set by Boston Dynamics’ BigDog, which had claimed the record at 12.8 miles.

A group of engineering students, led by Andy Ruina, Cornell professor of theoretical and applied mechanics, announced the robotic record at the Dynamic Walking 2010 meeting on Friday, July 9, in Cambridge, Mass. Ruina leads the Biorobotics and Locomotion Laboratory at Cornell. The National Science Foundation funds this research.

Previously, students in Ruina’s lab set a record for an untethered walking robot in April 2008, when Ranger strode about 5.6 miles around the Barton Hall. Boston Dynamics’ BigDog subsequently beat that record.

One goal for robotic research is to show off the machine’s energy efficiency. Unlike other walking robots that use motors to control every movement, the Ranger appears more relaxed and in a way emulates human walking, using gravity and momentum to help swing its legs forward.

Standing still, the robot looks a bit like a tall sawhorse and its gait suggests a human on crutches, alternately swinging forward two outside legs and then two inside ones. There are no knees, but its feet can flip up – and out of the way, while it swings its legs – so that the robot can finish its step.

Ruina says that this record not only advances robotics, but helps undergraduate students learn about the mechanics of walking. The information could be applied to rehabilitation, prosthetics for humans and improving athletic performance.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Interdisciplinary Research:

nachricht Lego-like wall produces acoustic holograms
17.10.2016 | Duke University

nachricht New evidence on terrestrial and oceanic responses to climate change over last millennium
11.10.2016 | University of Granada

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>