Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Out of the Gait: Cornell’s Robot Ranger Sets Untethered ‘Walking’ Record at 14.3 Miles

21.07.2010
The loneliness of the long-distance robot: A Cornell University robot named Ranger walked 14.3 miles in about 11 hours, setting an unofficial world record at Cornell’s Barton Hall early on July 6. A human – armed with nothing more than a standard remote control for toys – steered the untethered robot.

Ranger navigated 108.5 times around the indoor track in Cornell’s Barton Hall – about 212 meters per lap, and made about 70,000 steps before it had a stop and recharge.

The 14.3-mile record beats the former world record set by Boston Dynamics’ BigDog, which had claimed the record at 12.8 miles.

A group of engineering students, led by Andy Ruina, Cornell professor of theoretical and applied mechanics, announced the robotic record at the Dynamic Walking 2010 meeting on Friday, July 9, in Cambridge, Mass. Ruina leads the Biorobotics and Locomotion Laboratory at Cornell. The National Science Foundation funds this research.

Previously, students in Ruina’s lab set a record for an untethered walking robot in April 2008, when Ranger strode about 5.6 miles around the Barton Hall. Boston Dynamics’ BigDog subsequently beat that record.

One goal for robotic research is to show off the machine’s energy efficiency. Unlike other walking robots that use motors to control every movement, the Ranger appears more relaxed and in a way emulates human walking, using gravity and momentum to help swing its legs forward.

Standing still, the robot looks a bit like a tall sawhorse and its gait suggests a human on crutches, alternately swinging forward two outside legs and then two inside ones. There are no knees, but its feet can flip up – and out of the way, while it swings its legs – so that the robot can finish its step.

Ruina says that this record not only advances robotics, but helps undergraduate students learn about the mechanics of walking. The information could be applied to rehabilitation, prosthetics for humans and improving athletic performance.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Interdisciplinary Research:

nachricht When the Brain Grows, the IQ Rises
16.02.2016 | Technische Universität Chemnitz

nachricht Standard BMI inadequate for tracking obesity during leukemia therapy
29.01.2016 | Children's Hospital Los Angeles

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>