Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate engineering can't erase climate change

04.06.2014

Tinkering with climate change through climate engineering isn't going to help us get around what we have to do says a new report authored by researchers at six universities, including Simon Fraser University.

After evaluating a range of possible climate-altering approaches to dissipating greenhouse gases and reducing warming, the interdisciplinary team concluded there's no way around it. We have to reduce the amount of carbon being released into the atmosphere.


SFU assistant professor Jonn Axsen has co-authored a new report on climate engineering to battle climate change.

Credit: Carol Thorbes, SFU PAMR

"Some climate engineering strategies look very cheap on paper. But when you consider other criteria, like ecological risk, public perceptions and the abilities of governments to control the technology, some options look very bad," says Jonn Axsen.

The assistant professor in SFU's School of Resource and Environmental Management is a co-author on this study, which appears in the latest issue of the peer-reviewed journal Frontiers in Ecology and the Environment. It is the first scholarly attempt to rank a wide range of approaches to minimizing climate change in terms of their feasibility, cost-effectiveness, risk, public acceptance, governability and ethics.

It states reducing emissions, through some combination of switching away from fossil fuels to low-carbon energy sources, improving energy efficiency, and changing human behaviour, is still the most effective way of confronting climate change.

The authors note though that some approaches to climate engineering are more promising than others, and they should be used to augment efforts to reduce the climate-change effects resulting from human activity. For example, strategies such as forest management and geological storage of carbon dioxide may be useful complements.

Other climate engineering strategies are less appealing, such as fertilizing the ocean with iron to absorb carbon dioxide or reducing global warming by injecting particles into the atmosphere to block sunlight.

"Take the example of solar radiation management, which is the idea of putting aerosols into the stratosphere, kind of like what happens when a large volcano erupts," Axsen explains.

"This is a surprisingly cheap way to reduce global temperatures, and we have the technology to do it. But our study asked other important questions. What are the environmental risks? Will global citizens accept this? What country would manage this? Is that fair? Suddenly, this strategy does not look so attractive."

Working under the auspices of the National Science Foundation, the authors spent two years evaluating more than 100 studies that addressed the various implications of climate engineering and their anticipated effects on greenhouse gases.

The authors hope their study will help the public and decision-makers invest in the approaches with the largest payoffs and the fewest disadvantages. At stake, they emphasize, are the futures of our food production, climate and water security.

###

Background: Axsen's collaborators were Daniela Cusack, an assistant professor of geography in the University of California, Los Angeles' College of Letters and Science; Lauren Hartzell-Nichols, acting assistant professor in The Program on Values in Society and The Program on Environment at the University of Washington; Katherine Mackey, a postdoctoral researcher at Woods Hole Oceanographic Institution and the Marine Biological Laboratory; Rachael Shwom, assistant professor in human ecology at Rutgers University; and Sam White, assistant professor of environmental history at Ohio State University.

Simon Fraser University is consistently ranked among Canada's top comprehensive universities and is one of the top 50 universities in the world under 50 years old. With campuses in Vancouver, Burnaby and Surrey, B.C., SFU engages actively with the community in its research and teaching, delivers almost 150 programs to more than 30,000 students, and has more than 125,000 alumni in 130 countries.

Simon Fraser University: Engaging Students. Engaging Research. Engaging Communities.

Contact: Jonn Axsen, 778.782.9365, 778.239.1169, jaxsen@sfu.ca
Carol Thorbes, PAMR, 778.782.3035, cthorbes@sfu.ca

Note: Axsen will be available to do media interviews starting at 11 a.m., Tuesday, June 2.

Carol Thorbes | Eurek Alert!

Further reports about: Climate Environment atmosphere behaviour dioxide gases greenhouse strategies universities volcano

More articles from Interdisciplinary Research:

nachricht Scientists develop machine-learning method to predict the behavior of molecules
11.10.2017 | New York University

nachricht A new method for the 3-D printing of living tissues
16.08.2017 | University of Oxford

All articles from Interdisciplinary Research >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>