Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s biggest computing grid launched

07.10.2008
The world’s largest computing grid is ready to tackle mankind’s biggest data challenge from the earth’s most powerful accelerator. Today, three weeks after the first particle beams were injected into the Large Hadron Collider (LHC), the Worldwide LHC Computing Grid combines the power of more than 140 computer centers from 33 countries to analyze and manage more than 15 million gigabytes of LHC data every year.

The United States is a vital partner in the development and operation of the WLCG. Fifteen universities and three U.S. Department of Energy (DOE) national laboratories from 11 states contribute their power to the project.

“The U.S. has been an essential partner in the development of the vast distributed computing system that will allow 7,000 scientists around the world to analyze LHC data, complementing its crucial contributions to the construction of the LHC,” said Glen Crawford of the High Energy Physics program in DOE’s Office of Science. DOE and the National Science Foundation support contributions to the LHC and to the computing and networking infrastructures that are an integral part of the project.

U.S. contributions to the Worldwide LHC Computing Grid are coordinated through the Open Science Grid, a national computing infrastructure for science. The Open Science Grid not only contributes computing power for LHC data needs, but also for projects in many other scientific fields including biology, nanotechnology, medicine and climate science.

“Particle physics projects such as the LHC have been a driving force for the development of worldwide computing grids,” said Ed Seidel, director of the National Science Foundation’s Office of Cyberinfrastructure. “The benefits from these grids are now being reaped in areas as diverse as mathematical modeling and drug discovery.”

“Open Science Grid members have put an incredible amount of time and effort in developing a nationwide computing system that is already at work supporting America’s 1,200 LHC physicists and their colleagues from other sciences,” said Open Science Grid Executive Director Ruth Pordes from DOE’s Fermi National Accelerator Laboratory.

Dedicated optical fiber networks distribute LHC data from CERN in Geneva, Switzerland to eleven major “Tier-1” computer centers in Europe, North America and Asia, including those at DOE’s Brookhaven National Laboratory in New York and Fermi National Accelerator Laboratory in Illinois. From these, data is dispatched to more than 140 “Tier-2” centers around the world, including twelve in the United States.

“Our ability to manage data at this scale is the product of several years of intense testing,” said Ian Bird, leader of the Worldwide LHC Computing Grid project. “Today’s result demonstrates the excellent and successful collaboration we have enjoyed with countries all over the world. Without these international partnerships, such an achievement would be impossible.”

“When the LHC starts running at full speed, it will produce enough data to fill about six CDs per second,” said Michael Ernst, director of Brookhaven National Laboratory’s Tier-1 Computing Center. “As the first point of contact for LHC data in the United States, the computing centers at Brookhaven and Fermilab are responsible for storing and distributing a great amount of this data for use by scientists around the country. We’ve spent years ramping up to this point, and now, we’re excited to help uncover some of the numerous secrets nature is still hiding from us.”

Physicists in the U.S. and around the world will sift through the LHC data torrent in search of tiny signals that will lead to discoveries about the nature of the physical universe. Through their distributed computing infrastructures, these physicists also help other scientific researchers increase their use of computing and storage for broader discovery.

“Grid computing allows university research groups at home and abroad to fully participate in the LHC project while fostering positive collaboration across different scientific departments on many campuses,” said Ken Bloom from the University of Nebraska-Lincoln, manager for seven Tier-2 sites in the United States.

Media contacts
Brookhaven National Laboratory: Kendra Snyder, ksnyder@bnl.gov, 631-344-8191
Fermi National Accelerator Laboratory: Judy Jackson, jjackson@fnal.gov, 630-840-3351
Open Science Grid: Anne Heavey, aheavey@fnal.gov, 630-840-8039
CERN: James Gillies, james.gillies@cern.ch, +41 22 76 741 01
National Science Foundation: Lisa-Joy Zgorski, lisajoy@nsf.gov, 703-292-8311
U.S. Department of Energy: Jeff Sherwood, jeff.sherwood@hq.doe.gov, 202-586-5806
Grid computing and Large Hadron Collider images are available at http://www.uslhc.us/Images.
U.S. support for LHC participation
The U.S. Department of Energy (DOE) and the National Science Foundation (NSF) invested a total of $531 million in the construction of the Large Hadron Collider and the ATLAS and CMS detectors. DOE provided $200 million for the construction of critical LHC accelerator components, $250 million for the design and construction of the ATLAS and CMS detectors, and continues to support U.S. scientists’ work on the detectors and accelerator R&D. NSF has focused its support on funding university scientists who have contributed to the design and construction of CMS and ATLAS ($81 million). In addition, both agencies promote the development of advanced computing innovations to meet the enormous LHC data challenge. More than 1,700 scientists, engineers, students and technicians from 94 U.S. universities and laboratories (full list available here) participate in the LHC and its experiments.
LHC Computing Grid participants
Signatories to the Worldwide LHC Computing Grid are: Australia, Austria, Belgium, Canada, China, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Italy, India, Israel, Japan, Republic of Korea, the Netherlands, Norway, Pakistan, Poland, Portugal, Romania, the Russian Federation, Slovenia, Spain, Sweden, Switzerland, Taipei, Turkey, the United Kingdom, Ukraine, and the United States of America.

Brookhaven National Laboratory is operated and managed for DOE's Office of Science by Brookhaven Science Associates. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom.

Fermilab is a DOE Office of Science national laboratory, operated under contract by the Fermi Research Alliance, LLC. The Department of Energy Office of Science is the nation's single-largest supporter of basic research in the physical sciences.

The Open Science Grid is a national distributed computing grid for data-intensive research, supported by the U.S. Department of Energy and the National Science Foundation. Visit www.opensciencegrid.org.

CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status.

Kendra Snyder | EurekAlert!
Further information:
http://www.bnl.gov

Further reports about: Brookhaven Computing Grids LHC LHC Computing Grid Large Hadron Collider

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water world

20.11.2017 | Life Sciences

Less is more to produce top-notch 2D materials

20.11.2017 | Materials Sciences

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>