Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USM Develops Sophisticated Data Identification System Using RF Technology

17.02.2009
The product, known as Contactless Active Integrated RFID System (CAIRFID) is capable of identifying data at a distance of between 30 to 45 meters. The capacity of CAIRFID which has touched 2.45 GHz, is also the first product in the world to incorporate Zigbee technology.

Universiti Sains Malaysia (USM) is the first institution in the country to develop a data identification system using radio frequency (RF) technology, which is far superior to the current system used in the country.

Apart from being the first of its kind, the product, better known as Contactless Active Integrated RFID System (CAIRFID) is capable of identifying data at a distance of between 30 to 45 meters.

The capacity of CAIRFID which has touched 2.45 GHz, is also the first product in the world to incorporate Zigbee technology.

Dr. Widad Ismail, head of the research team from PPKEE that developed this product and who is also a lecturer at the School of Electrical and Electronic Engineering (PPKEE), USM said that the product was multi-functional.

He said that the most significant function is that it simplifies the various data identification systems in many sectors including medical, banking, housing, schools, institutions of higher learning and also on the highways.

” We can apply this technology according to what is appropriate and suitable to our needs. This is because it not only can be modified but is also portable as the size of the product is small.

“Most interesting is the fact that it is a purely Malaysian-made product, and has the potential to be used widely in the country as it is cost-effective but without compromising the quality and sophistication of the product,” he explained.

He added that data identification technology presently used in the country is imported at a much higher cost but with a limited reading range.

“Take for example the Smartcard used to pay tolls on the highway. The various problems associated with the smartcard involve touching the card against the scanner or slowing down the car in order to facilitate reading of the data in the card.

“This is because the present system does not utilize RF technology but rather infrared rays. This limits the reading range to between 3 to 5 meters only, which is far lower than the capacity of the product we have developed,” he said.

Dr. Widad said with the introduction of this new technology, users do not have to slow down or wind down the car window to touch the card against the scanner as the CAIRFID reading range is much higher.

He added that CAIRFID was successfully developed in less than a year from the time the AUTO-ID Lab was set up at PPKEE, USM in January of last year.

The product was developed with the Ministry of Science, Technology and Innovation (MOSTI) pre-commercial grant of RM 2 million. Once the product receives the attention of the industry, it will be ready to be commercialized.

He said that for now, the system has been used for the purpose of in-depth study at PPKEE to record information systematically on student attendance and also at the staff car park.

Dr. Widad also added that USM’s latest invention will contribute to the development of technology and has the potential to bring in high economic returns to the country.

Mohamad Abdullah | ResearchSEA
Further information:
http://www.usm.my
http://www.usm.my/ver4en/berita-penuh-en.asp?id=6422&idform=7

More articles from Information Technology:

nachricht Drones learn to navigate autonomously by imitating cars and bicycles
23.01.2018 | Universität Zürich

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>