Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ulster Scientists Join Intelligent Rescue Robot Partnership

13.08.2008
Scientists at the University of Ulster are to begin working on a multi-million pound project to develop unmanned 'intelligent' aerial robots which could revolutionise the way in which search and rescue operations or the response to natural or man-made disasters are carried out.

The small helicopters would be remotely controlled and would be able to send back pictures and data to a central command post. They would also be able to communicate with each other to co-ordinate their operations.

Professor Gerard Parr, Professor of Telecommunications Engineering at Ulster said the unmanned aerial vehicles (UAVs) could be used in a number of scenarios including to:

* Search for people lost in isolated areas like mountains, forests or moors.

* Monitor disasters like floods or forest fires which could cover thousands of acres.

* Survey biological disasters such as chemical factory fires and sample gas emissions.

* Act as a communications platform where normal radio or mobile telephone transmissions are impossible or disrupted.

Professor Parr and his colleague Professor Sally McClean, Professor of Mathematics at Ulster, are working with scientists from University College London and the University of Oxford on the project. The teams have been awarded a prestigious £2.2m grant from the Engineering and Physical Sciences Research Council, the UK government’s leading funding agency for research in engineering and physical sciences, to investigate the development of the innovative systems and control technology.

Ulster’s expertise lies in the fields of telecommunications protocolds, radio communications, control and optimization of data management. The project runs from September this year until February 2012.

Professor Parr said: “We intend to use helicopter models as the platform for the new technology. We need a vehicle that can carry cameras and various sensors as well as the control mechanisms. A helicopter-type unmanned vehicle would be able to hover and would be more stable than an aeroplane for specific operations.

“Ultimately, the intention would be to send several of these unmanned vehicles, a swarm, out at one time to enable them to cover a very large area in the shortest possible time. Using infra-red and other sensors they could scan large areas like Dartmoor, the Mournes or the Lake District using intelligent search algorithms to identify a target whilst at the same time avoiding collision with one another if someone was reported missing.

“They would be controlled from a command base, which could be a jeep roving about the area or possibly airborne, but they would also be able to act autonomously. For example, if one UAV detected a signal such as a heat source, or a radio pulse from clothing or a mobile phone call, it could leave the other vehicles to investigate and then return and relay its information back to base.” There are many engineering and research challenges to be addressed as part of the project, not least to design adequate energy awareness protocols that will optimise in-situ operations as long as possible in support of a particular mission.

The UAVs could stay aloft for up to half a hour, flying at 20-30mph or even faster over a range of 5000 metres or more depending on payload, mission function and power levels.

The vehicles could be equipped with application specific sensors, including heat sensitive cameras and video, gas particulate filters, wireless radio communications and GPS technology. They could organize their own search, determine if the object found was what they were looking for and then report back to the ground controller.

As well as Professors Parr and McClean, the multi-disciplinary team consists of Professor Steve Hailes and Dr Simon Julier from the Department of Computer Science at UCL and Dr Niki Trigoni and Dr Stephen Cameron from the Oxford University Computing Laboratory who have international reputations in the areas of hardware sensor design and helicoptor platforms.

The team were awarded the grant following a highly competitive process for funding under the EPSRC WINES III (Wireless and Wireless Intelligent Networked Systems) Research Programme. A total of 61 consortia proposals were originally submitted, with 15 shortlisted and four going through to the final selection.

The scientists will build prototypes of the unmanned vehicles with external partners including BAE Systems Operations Ltd, Thales Research and Technology UK Ltd, Communications Research Centre, Canada, BT Research Laboratories UK, Boeing Co, USA and the UK Home Office Science Development Branch.

David Young | alfa
Further information:
http://www.ulster.ac.uk

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>