Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

System improves automated monitoring of security cameras

05.06.2012
New approach uses mathematics to reach a compromise between accuracy and speed

Police and security teams guarding airports, docks and border crossings from terrorist attack or illegal entry need to know immediately when someone enters a prohibited area, and who they are. A network of surveillance cameras is typically used to monitor these at-risk locations 24 hours a day, but these can generate too many images for human eyes to analyze.

Now, a system being developed by Christopher Amato, a postdoc at MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL), can perform this analysis more accurately and in a fraction of the time it would take a human camera operator. "You can't have a person staring at every single screen, and even if you did the person might not know exactly what to look for," Amato says. "For example, a person is not going to be very good at searching through pages and pages of faces to try to match [an intruder] with a known criminal or terrorist."

Existing computer-vision systems designed to carry out this task automatically tend to be fairly slow, Amato says. "Sometimes it's important to come up with an alarm immediately, even if you are not yet positive exactly what it is happening," he says. "If something bad is going on, you want to know about it as soon as possible."

So Amato and his University of Minnesota colleagues Komal Kapoor, Nisheeth Srivastava and Paul Schrater are developing a system that uses mathematics to reach a compromise between accuracy — so the system does not trigger an alarm every time a cat walks in front of the camera, for example — with the speed needed to allow security staff to act on an intrusion as quickly as possible.

For camera-based surveillance systems, operators typically have a range of computer-vision algorithms they could use to analyze the video feed. These include skin detection algorithms that can identify a person in an image, or background detection systems that detect unusual objects, or when something is moving through the scene.

To decide which of these algorithms to use in a given situation, Amato's system first carries out a learning phase, in which it assesses how each piece of software works in the type of setting in which it is being applied, such as an airport. To do this, it runs each of the algorithms on the scene, to determine how long it takes to perform an analysis, and how certain it is of the answer it comes up with. It then adds this information to its mathematical framework, known as a partially observable Markov decision process (POMDP).

Then, for any given situation — if it wants to know if an intruder has entered the scene, for example — the system can decide which of the available algorithms to run on the image, and in which sequence, to give it the most information in the least amount of time. "We plug all of the things we have learned into the POMDP framework, and it comes up with a policy that might tell you to start out with a skin analysis, for example, and then depending what you find out you might run an analysis to try to figure out who the person is, or use a tracking system to figure out where they are [in each frame]," Amato says. "And you continue doing this until the framework tells you to stop, essentially, when it is confident enough in its analysis to say there is a known terrorist here, for example, or that nothing is going on at all."

Like a human detective, the system can also take context into account when analyzing a set of images, Amato says. So for instance, if the system is being used at an airport, it could be programmed to identify and track particular people of interest, and to recognize objects that are strange or in unusual locations, he says. It could also be programmed to sound an alarm whenever there are any objects or people in the scene, when there are too many objects, or if the objects are moving in ways that give cause for concern.

In addition to port and airport security, the system could monitor video information obtained by a fleet of unmanned aircraft, Amato says. It could also be used to analyze data from weather-monitoring sensors to determine where tornados are likely to appear, or information from water samples taken by autonomous underwater vehicles, he says. The system would determine how to obtain the information it needs in the least amount of time and with the fewest possible sensors.

Amato and his colleagues will present their system in a paper at the 24th IAAI Conference on Artificial Intelligence in Toronto in July.

Written by Helen Knight, MIT News Office

Caroline McCall | EurekAlert!
Further information:
http://www.mit.edu

More articles from Information Technology:

nachricht Goodbye, login. Hello, heart scan
26.09.2017 | University at Buffalo

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>