Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart desks make sci-fi a reality in the classroom

17.09.2008
Schools are set for a Star Trek make-over thanks to the development of the world’s first interactive classroom by experts at Durham University.

Researchers at the Technology-Enhanced Learning Research Group (TEL) are designing new learning environments using interactive multi-touch desks that look and act like a large version of an Apple iPhone.

Example: To see how the new desks work:
http://smart.dur.ac.uk/index.php?n=Main.MultitouchPage
The team observed how students and teachers interact in classes and how Information Communications technology (ICT) could improve collaboration. They then set about designing an interactive classroom solution called ‘SynergyNet’ to reflect TEL’s aims of achieving active student engagement and learning by sharing, problem-solving and creating.

The team has linked up with manufacturers to design software, and desks that recognize multiple touches on the desktop, using vision systems that can see infrared light.

SynergyNet will integrate ICT into the fabric of the classroom. The new desk with a ‘multi-touch’ surface will be the central component; the desks will be networked and linked to a main smartboard offering new opportunities for teaching and collaboration.

Several students will be able to work together at a desk as the desks allow simultaneous screen contact by multiple users using fingers or pens. Durham researchers want to create a ‘natural way’ for students to use computers in class. The system encourages collaboration between students and teachers, and a move away from teacher-centric learning.

The government’s ICT vision aims to: ‘transform teaching, learning and help to improve outcomes through shared ideas, more exciting lessons… and to engage ‘hard to reach’ learners, with special needs support, more motivating ways of learning, and more choice about how and where to learn.’

Dr. Liz Burd, Director of Active Learning in Computing at Durham University says: “Our vision is that every desk in school in 10 years time will be interactive. IT in schools is an exciting prospect - our system is very similar to the type of interface shown as a vision of the future in the TV series Star Trek!

“We can now by-pass the ‘move-to-use’ whiteboard. The new desk can be both a screen and a keyboard, it can act like a multi-touch whiteboard and several students can use it at once. It offers fantastic scope for more participative teaching and learning.

“The system will also boost equal access in school. In IT, we have found that males have been the dominant actors - interactive classrooms will encourage more females to take part in lessons. It will also enable more disabled students to participate in lessons and allow more personalized learning.”

A single work-desk can operate as a set of individual work spaces and/or a large screen allowing students to cooperate on a task. The software will be used to link everything together in a fully interactive classroom system of desks and smartboards.

Teachers will be able to instantly display examples of good work by students on the main smart-board; tasks could also be set for each individual desk. Numeracy tasks could include exercises where pupils have to split a restaurant bill by sliding visual representations of money into a group space.

After testing the system with students of all ages, the software will be available to schools for free as open source code.

TEL in Computing is the largest funded research study to look at multi-touch interactive systems for education. £1.5 million has been awarded to Durham researchers who will design the system and software, and test it with students from primary and secondary schools, and university students over the next 4 years.

Dr. Andrew Hatch from Durham’s Technology-Enhanced Learning Research Group adds: “It changes the move-to-use principle; instead the computer becomes part of the desk. It’s a practical change that will provide a creative interface for life-long learning for all students!”

The Computing Department at Durham University leads TEL and England's only Centre of Excellence in Teaching and Learning (CETL) in Computer Science, called Active Learning in Computing (ALiC). This centre seeks to facilitate a shift towards far higher levels of active student engagement, where knowledge is obtained by sharing, problem-solving and creating, rather than by passive listening. Providing novel facilities and encouraging new ways of working will be a central focus.

The Active Learning in Computing research is funded by the EPSRC - Engineering and Physical Sciences Research Council; the ESRC - Economic and social research council, and the TLRP - Teaching and learning research programme.

Claire Whitelaw | alfa
Further information:
http://www.durham.ac.uk

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>