Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart desks make sci-fi a reality in the classroom

17.09.2008
Schools are set for a Star Trek make-over thanks to the development of the world’s first interactive classroom by experts at Durham University.

Researchers at the Technology-Enhanced Learning Research Group (TEL) are designing new learning environments using interactive multi-touch desks that look and act like a large version of an Apple iPhone.

Example: To see how the new desks work:
http://smart.dur.ac.uk/index.php?n=Main.MultitouchPage
The team observed how students and teachers interact in classes and how Information Communications technology (ICT) could improve collaboration. They then set about designing an interactive classroom solution called ‘SynergyNet’ to reflect TEL’s aims of achieving active student engagement and learning by sharing, problem-solving and creating.

The team has linked up with manufacturers to design software, and desks that recognize multiple touches on the desktop, using vision systems that can see infrared light.

SynergyNet will integrate ICT into the fabric of the classroom. The new desk with a ‘multi-touch’ surface will be the central component; the desks will be networked and linked to a main smartboard offering new opportunities for teaching and collaboration.

Several students will be able to work together at a desk as the desks allow simultaneous screen contact by multiple users using fingers or pens. Durham researchers want to create a ‘natural way’ for students to use computers in class. The system encourages collaboration between students and teachers, and a move away from teacher-centric learning.

The government’s ICT vision aims to: ‘transform teaching, learning and help to improve outcomes through shared ideas, more exciting lessons… and to engage ‘hard to reach’ learners, with special needs support, more motivating ways of learning, and more choice about how and where to learn.’

Dr. Liz Burd, Director of Active Learning in Computing at Durham University says: “Our vision is that every desk in school in 10 years time will be interactive. IT in schools is an exciting prospect - our system is very similar to the type of interface shown as a vision of the future in the TV series Star Trek!

“We can now by-pass the ‘move-to-use’ whiteboard. The new desk can be both a screen and a keyboard, it can act like a multi-touch whiteboard and several students can use it at once. It offers fantastic scope for more participative teaching and learning.

“The system will also boost equal access in school. In IT, we have found that males have been the dominant actors - interactive classrooms will encourage more females to take part in lessons. It will also enable more disabled students to participate in lessons and allow more personalized learning.”

A single work-desk can operate as a set of individual work spaces and/or a large screen allowing students to cooperate on a task. The software will be used to link everything together in a fully interactive classroom system of desks and smartboards.

Teachers will be able to instantly display examples of good work by students on the main smart-board; tasks could also be set for each individual desk. Numeracy tasks could include exercises where pupils have to split a restaurant bill by sliding visual representations of money into a group space.

After testing the system with students of all ages, the software will be available to schools for free as open source code.

TEL in Computing is the largest funded research study to look at multi-touch interactive systems for education. £1.5 million has been awarded to Durham researchers who will design the system and software, and test it with students from primary and secondary schools, and university students over the next 4 years.

Dr. Andrew Hatch from Durham’s Technology-Enhanced Learning Research Group adds: “It changes the move-to-use principle; instead the computer becomes part of the desk. It’s a practical change that will provide a creative interface for life-long learning for all students!”

The Computing Department at Durham University leads TEL and England's only Centre of Excellence in Teaching and Learning (CETL) in Computer Science, called Active Learning in Computing (ALiC). This centre seeks to facilitate a shift towards far higher levels of active student engagement, where knowledge is obtained by sharing, problem-solving and creating, rather than by passive listening. Providing novel facilities and encouraging new ways of working will be a central focus.

The Active Learning in Computing research is funded by the EPSRC - Engineering and Physical Sciences Research Council; the ESRC - Economic and social research council, and the TLRP - Teaching and learning research programme.

Claire Whitelaw | alfa
Further information:
http://www.durham.ac.uk

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>