Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulating firefighting operations on a PC

02.01.2012
Firefighters often put their lives at risk during operations, so it is essential they have reliable tools to help them do their job. Now, a modular simulation kit is set to help develop new information and communication technologies – and ensure they are tailored to firefighters’ needs from the outset.

It takes the highest levels of concentration for emergency workers to fight their way through smoke-filled buildings wearing breathing apparatus and protective suits. What is the location of the casualties? Where is the nearest exit, in case the crews need to get to safety?

Up to now, they have used ropes to retrace their steps, but these can get caught up or wrap themselves around obstacles. Chalk is used to mark which rooms have already been searched, but these markings are often difficult to see through the smoke. What is needed are new technologies such as sensor-based systems to support the emergency crews during operations where visibility is limited. But such systems, too, carry their own risks: having too much information to hand might confuse crews and be a hindrance.

That is why researchers at the Fraunhofer Institute for Applied Information Technology FIT in Sankt Agustin have now developed a set of special simulation methods and tools. These will allow emergency services to test technologies in a realistic environment while they are still in the development phase, so they can tailor them to their specific requirements long before they are needed in earnest. It also gives crews the chance to get used to unfamiliar sources of information while on safe ground. The FireSim method kit is made up of four simulation modules.

The first comprises a role-playing board game which emergency workers can use to play out operations. Players move around on a map of the emergency scene, and the new technologies are represented by special tokens. This allows crews to try out new ideas with a minimum of effort.

The second module is like a computer game. Various firefighters each sit at a PC, and on the screen they see the emergency scene from a first-person perspective. The players move through virtual space, opening doors and rescuing the injured, and trying out virtual prototypes of novel support systems – such as sensor nodes that mark out the paths that have already been followed and which rooms have been searched. “These simulations allow us to make rapid changes to prototypes and put them to the test in complex deployment scenarios. Since we want to take the whole hierarchy into account, we recreate all communication and coordination processes in the simulation as far as we can,” says FIT project manager Markus Valle-Klann.

The third simulation module blends the virtual and the real, with emergency crews playing out a scenario in a real environment, for instance to rescue someone from a smoke-filled building. They carry with them a system that is integrated into their suit, such as a display in their helmet or on their arm, and provides details of their location and bearings. Meanwhile, a virtual simulation runs in parallel, with helpers reenacting all the emergency workers’ real actions. New technologies such as the sensor nodes are simulated and the results sent by radio to the firefighters’ displays. In this way, systems of which no physical prototype has yet been built can already be tested in a real environment.

But to evaluate new technologies in a major fire event involving many emergency workers and bystanders, these methods will not suffice, so the researchers have developed a further module. “We take the behavior of individuals as our starting point. How does a firefighter behave, and how about members of the public? We convert these into behavioral models – or agents – and then a computer calculates how a major emergency operation will play out, taking these behavioral models into account,” explains Valle-Klann. Emergency workers can validate the results by taking part in these simulations. Some of them direct an avatar on a PC, while others move around in the real fire scene. The FIT researchers will be presenting the modular methods kit at the CeBIT trade fair in Hannover from March 6 -10, 2012 (Hall 9, Booth E 02).

Markus Valle-Klann | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/january/simulating-firefighting-op.html

More articles from Information Technology:

nachricht Rules for superconductivity mirrored in 'excitonic insulator'
08.12.2017 | Rice University

nachricht Smartphone case offers blood glucose monitoring on the go
08.12.2017 | University of California - San Diego

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>