Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulating firefighting operations on a PC

02.01.2012
Firefighters often put their lives at risk during operations, so it is essential they have reliable tools to help them do their job. Now, a modular simulation kit is set to help develop new information and communication technologies – and ensure they are tailored to firefighters’ needs from the outset.

It takes the highest levels of concentration for emergency workers to fight their way through smoke-filled buildings wearing breathing apparatus and protective suits. What is the location of the casualties? Where is the nearest exit, in case the crews need to get to safety?

Up to now, they have used ropes to retrace their steps, but these can get caught up or wrap themselves around obstacles. Chalk is used to mark which rooms have already been searched, but these markings are often difficult to see through the smoke. What is needed are new technologies such as sensor-based systems to support the emergency crews during operations where visibility is limited. But such systems, too, carry their own risks: having too much information to hand might confuse crews and be a hindrance.

That is why researchers at the Fraunhofer Institute for Applied Information Technology FIT in Sankt Agustin have now developed a set of special simulation methods and tools. These will allow emergency services to test technologies in a realistic environment while they are still in the development phase, so they can tailor them to their specific requirements long before they are needed in earnest. It also gives crews the chance to get used to unfamiliar sources of information while on safe ground. The FireSim method kit is made up of four simulation modules.

The first comprises a role-playing board game which emergency workers can use to play out operations. Players move around on a map of the emergency scene, and the new technologies are represented by special tokens. This allows crews to try out new ideas with a minimum of effort.

The second module is like a computer game. Various firefighters each sit at a PC, and on the screen they see the emergency scene from a first-person perspective. The players move through virtual space, opening doors and rescuing the injured, and trying out virtual prototypes of novel support systems – such as sensor nodes that mark out the paths that have already been followed and which rooms have been searched. “These simulations allow us to make rapid changes to prototypes and put them to the test in complex deployment scenarios. Since we want to take the whole hierarchy into account, we recreate all communication and coordination processes in the simulation as far as we can,” says FIT project manager Markus Valle-Klann.

The third simulation module blends the virtual and the real, with emergency crews playing out a scenario in a real environment, for instance to rescue someone from a smoke-filled building. They carry with them a system that is integrated into their suit, such as a display in their helmet or on their arm, and provides details of their location and bearings. Meanwhile, a virtual simulation runs in parallel, with helpers reenacting all the emergency workers’ real actions. New technologies such as the sensor nodes are simulated and the results sent by radio to the firefighters’ displays. In this way, systems of which no physical prototype has yet been built can already be tested in a real environment.

But to evaluate new technologies in a major fire event involving many emergency workers and bystanders, these methods will not suffice, so the researchers have developed a further module. “We take the behavior of individuals as our starting point. How does a firefighter behave, and how about members of the public? We convert these into behavioral models – or agents – and then a computer calculates how a major emergency operation will play out, taking these behavioral models into account,” explains Valle-Klann. Emergency workers can validate the results by taking part in these simulations. Some of them direct an avatar on a PC, while others move around in the real fire scene. The FIT researchers will be presenting the modular methods kit at the CeBIT trade fair in Hannover from March 6 -10, 2012 (Hall 9, Booth E 02).

Markus Valle-Klann | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/january/simulating-firefighting-op.html

More articles from Information Technology:

nachricht Fingerprints of quantum entanglement
16.02.2018 | University of Vienna

nachricht Simple in the Cloud: The digitalization of brownfield systems made easy
07.02.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>