Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon helps light go through the right channels

28.03.2014

Improved design of lasers on optoelectronic chips will advance optical communications

When it comes to data transmission, light is superior to electronics. An ability to transmit data in parallel by utilizing multiple light wavelengths allows optical fibers to carry more information than electrical cables.


Current computer technology uses electronics, but a new laser design based on a thin-layered silicon chip may help increase data processing capabilities.

© Olga Miltsova/Hemera/Thinkstock

Computers are currently based on electronics, but they would benefit from employing optical signals. However, for this to become a reality, it needs to be implemented on a small scale and result in low power consumption.

Now, Vivek Krishnamurthy from the A*STAR Data Storage Institute in Singapore and his colleagues have designed a laser on a microelectronic chip that has a lower power consumption and a higher efficiency1.

“By developing lasers on silicon, we can combine the electronic data processing capability of the microelectronic chip with the high energy efficiency of optical communications over distances ranging from a few micrometers within a chip to hundreds of meters in data centers,” says Krishnamurthy.

The processing speed of the microelectronic chip is limited by its power consumption; most of the power is consumed by the connecting electrical wires and links. Optical links, on the other hand, consume practically no energy but are limited by the power consumption of the light source, which is often a laser.

For optical links to be feasible on a small scale, the electrical power consumption of lasers must be reduced, yet still be able to generate sufficient optical energy for transmission.

Lasers cannot be made from silicon as it is a poor light emitter. Instead, lasers are fabricated by bonding an active material based on indium phosphide — a good light emitter — to a thin silicon film. However, because silicon is better for carrying optical signals, the light from the laser needs to be routed through the silicon chip via optical channels. This requires fabricating optical channels in silicon outside the laser region.

Generating light efficiently in the active medium and efficiently routing it via the silicon layer simultaneously reduces the electrical current required and increases the power generated. Calculations show that this silicon-based design will have a three to four times higher light generation efficiency than competing schemes.

This high efficiency makes the silicon-based laser design promising for making optical chips, which, says Krishnamurthy, is the next step for the project team. “We have begun the experimental demonstration of the laser,” he says. “Our plan is to integrate this laser onto our silicon platform and develop a fully functional photonic system for applications, for example, in data communications and storage.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Associated links

Journal information

Krishnamurthy, V., Wang, Q., Pu, J., Loh, T.-H. & Ho, S. T. Optical design of distributed feedback lasers-on-thin-film-silicon. IEEE Photonics Technology Letters 25, 944–947 (2013).

A*STAR Research | ResearchSEA News
Further information:
http://www.researchsea.com

Further reports about: A*STAR Optical Photonics Science Silicon Storage lasers processing signals

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>