Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon helps light go through the right channels

28.03.2014

Improved design of lasers on optoelectronic chips will advance optical communications

When it comes to data transmission, light is superior to electronics. An ability to transmit data in parallel by utilizing multiple light wavelengths allows optical fibers to carry more information than electrical cables.


Current computer technology uses electronics, but a new laser design based on a thin-layered silicon chip may help increase data processing capabilities.

© Olga Miltsova/Hemera/Thinkstock

Computers are currently based on electronics, but they would benefit from employing optical signals. However, for this to become a reality, it needs to be implemented on a small scale and result in low power consumption.

Now, Vivek Krishnamurthy from the A*STAR Data Storage Institute in Singapore and his colleagues have designed a laser on a microelectronic chip that has a lower power consumption and a higher efficiency1.

“By developing lasers on silicon, we can combine the electronic data processing capability of the microelectronic chip with the high energy efficiency of optical communications over distances ranging from a few micrometers within a chip to hundreds of meters in data centers,” says Krishnamurthy.

The processing speed of the microelectronic chip is limited by its power consumption; most of the power is consumed by the connecting electrical wires and links. Optical links, on the other hand, consume practically no energy but are limited by the power consumption of the light source, which is often a laser.

For optical links to be feasible on a small scale, the electrical power consumption of lasers must be reduced, yet still be able to generate sufficient optical energy for transmission.

Lasers cannot be made from silicon as it is a poor light emitter. Instead, lasers are fabricated by bonding an active material based on indium phosphide — a good light emitter — to a thin silicon film. However, because silicon is better for carrying optical signals, the light from the laser needs to be routed through the silicon chip via optical channels. This requires fabricating optical channels in silicon outside the laser region.

Generating light efficiently in the active medium and efficiently routing it via the silicon layer simultaneously reduces the electrical current required and increases the power generated. Calculations show that this silicon-based design will have a three to four times higher light generation efficiency than competing schemes.

This high efficiency makes the silicon-based laser design promising for making optical chips, which, says Krishnamurthy, is the next step for the project team. “We have begun the experimental demonstration of the laser,” he says. “Our plan is to integrate this laser onto our silicon platform and develop a fully functional photonic system for applications, for example, in data communications and storage.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Associated links

Journal information

Krishnamurthy, V., Wang, Q., Pu, J., Loh, T.-H. & Ho, S. T. Optical design of distributed feedback lasers-on-thin-film-silicon. IEEE Photonics Technology Letters 25, 944–947 (2013).

A*STAR Research | ResearchSEA News
Further information:
http://www.researchsea.com

Further reports about: A*STAR Optical Photonics Science Silicon Storage lasers processing signals

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>