Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signal opportunities on the slopes -- with RFID

10.03.2009
A skier gives her all, closely races past the gates in the giant slalom to the final stretch. Yet, upon reaching the bottom, the disappointment is great: Too slow once again. How come?

Until now, coaches and athletes have analyzed videos to identify weaknesses in technique. "An analysis was based more on instinct than concrete measured values," explains Dr. Klaus Richter, Expert Group Manager at the Fraunhofer Institute for Factory Operation and Automation IFF in Magdeburg.


In the future, transponders – radio transmitters and receivers – will support coaches in their work. They can be attached to an athlete's skis and transmit radio waves in every direction through small antennas one thousand times per second. The antennas are located to the front and the back of the skis. Receiving stations placed alongside a slope in regular intervals pick up the signals and analyze the time a signal needs to travel from the antenna to a station, thus accurately determining an antenna's position within three centimeters.

The underlying technology is radio frequency identification or RFID. A computer calculates the position of the skis every millisecond and displays their exact path on a monitor. "A coach recognizes whether both skis were parallel," explains Richter, "whether the skier has drifted from her path in a curve and whether she is able to carve properly." Carving involves taking the turns entirely on the edge of one's skis.

The Austrian firm Abatec developed the system. Together with colleagues from the university in Magdeburg, the researchers at the Fraunhofer IFF are testing its systematic implementation in sports: What adhesive bonds the antennas to the skis so they do not loosen during a downhill run but can be detached when no longer needed? How can the radio signals be evaluated so a coach is able to draw conclusions about technique?

Another challenge: Many skis contain metal layers of varying thicknesses, which shift a transmitter's frequency. Depending on the skis' design, the antennas transmit on another frequency and the base station no longer detects the signal. The solution: An additional metal plate under the antennas alters the signal so intensely and predictably that the slight differences between different skis are of no consequence: The antennas always transmit with the same controlled frequency. The technology performed well in initial tests in Bottrop ski hall and the system is now ready for use.

Klaus Richter | EurekAlert!
Further information:
http://www.iff.fraunhofer.de

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>