Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signal opportunities on the slopes -- with RFID

10.03.2009
A skier gives her all, closely races past the gates in the giant slalom to the final stretch. Yet, upon reaching the bottom, the disappointment is great: Too slow once again. How come?

Until now, coaches and athletes have analyzed videos to identify weaknesses in technique. "An analysis was based more on instinct than concrete measured values," explains Dr. Klaus Richter, Expert Group Manager at the Fraunhofer Institute for Factory Operation and Automation IFF in Magdeburg.


In the future, transponders – radio transmitters and receivers – will support coaches in their work. They can be attached to an athlete's skis and transmit radio waves in every direction through small antennas one thousand times per second. The antennas are located to the front and the back of the skis. Receiving stations placed alongside a slope in regular intervals pick up the signals and analyze the time a signal needs to travel from the antenna to a station, thus accurately determining an antenna's position within three centimeters.

The underlying technology is radio frequency identification or RFID. A computer calculates the position of the skis every millisecond and displays their exact path on a monitor. "A coach recognizes whether both skis were parallel," explains Richter, "whether the skier has drifted from her path in a curve and whether she is able to carve properly." Carving involves taking the turns entirely on the edge of one's skis.

The Austrian firm Abatec developed the system. Together with colleagues from the university in Magdeburg, the researchers at the Fraunhofer IFF are testing its systematic implementation in sports: What adhesive bonds the antennas to the skis so they do not loosen during a downhill run but can be detached when no longer needed? How can the radio signals be evaluated so a coach is able to draw conclusions about technique?

Another challenge: Many skis contain metal layers of varying thicknesses, which shift a transmitter's frequency. Depending on the skis' design, the antennas transmit on another frequency and the base station no longer detects the signal. The solution: An additional metal plate under the antennas alters the signal so intensely and predictably that the slight differences between different skis are of no consequence: The antennas always transmit with the same controlled frequency. The technology performed well in initial tests in Bottrop ski hall and the system is now ready for use.

Klaus Richter | EurekAlert!
Further information:
http://www.iff.fraunhofer.de

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>