Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SENEKA Sensor network with mobile robots for disaster management

25.02.2014
This year again people are suffering from severe natural disasters. Where tidal waves, earthquakes or severe storms wreak havoc in towns, villages and agricultural land, peoples’ plight is always great. The key challenge in managing large-scale natural disasters is to provide rapid and comprehensive reconnaissance of the situation to facilitate a swift, targeted search for victims and identify access routes for emergency services.

This year again people are suffering from severe natural disasters. Where tidal waves, earthquakes or severe storms wreak havoc in towns, villages and agricultural land, peoples’ plight is always great. The key challenge in managing large-scale natural disasters is to provide rapid and comprehensive reconnaissance of the situation to facilitate a swift, targeted search for victims and identify access routes for emergency services.


The mobile ground surveillance and control station in a van and various ground robots (UGV) and airborne robots (UAV)

Fraunhofer IOSB 2014

Where industrial or facilities are affected, the area may be additionally contaminated by radioactivity or leaking toxins. Although a rapid rescue of victims is essential, sources of danger to the rescuer must also be detected as quickly as possible. Here networked robots and sensors can pay a valuable contribution.

State of the art

The conventional methods used in disaster management, which are characterized by human rescuers and dogs, fall increasingly short of being able to meet the complex requirements posed by such events. Initial experience during rescue work at the destroyed World Trade Center in New York proved that the use of robots and sensors results in a more efficient search for victims and sources of danger and relieves the emergency services.

For an efficient and effective disaster management, it is advisable to have several different robots and sensors on the ground and in the air enter the affected area. These communicate with each other over wireless connections, are equipped depending on the situation at hand and are dynamically networked with the rescue teams. The resulting division of labor and information exchange allows reconnaissance and rescue work to be conducted more rapidly. To date there are no practicable solutions on the market.

Networked unmanned aerial and ground vehicles support the rescue forces

For particularly large disaster areas, the SENEKA concept accelerates the situation assessment because the sensors and robots distributed across the area can interlink to form cooperative teams (swarm intelligence). The parallelization of tasks and the use of synergy effects (for example by combining local- and wide-area reconnaissance sensors) facilitate a faster, more targeted and situation-specific search for victims and hazards. One moving ground sensor platform (UGV), for example, can be accompanied by one airborne sensor platform (UAV), such as a quadrocopter. The aerial perspective of the UAV is helping the UGV to find its way and search for victims.

Using a staged disaster scenario, the SENEKA concept is already being tested.

The project consortium regulary assesses the functionality and performance of the SENEKA concept and prototype components under close consultation of important end users (THW and the fire departments of Mannheim and Berlin). In order to proof the functionality and performance of the SENEKA concept at the end of 2014 a comprehensive realistic use case will be employed at the test site of the Federal Office of Civil Protection and Disaster Assistance (BBK) in Ahrweiler.

The SENEKA project aims to pay a substantial contribution to closing the gap between research and practical usage with the new possibilities offered by the new information, sensor and robot technologies. The complementary skills and extensive experience of the participating Fraunhofer Institutes IOSB, IAIS, IIS, IPM, and IPA create a good basis for achieving the ambitious objectives of SENEKA.

Through targeted strategic investments an infrastructure (various UAV, UGV, mobile control centers,wireless s-net components, 2D/3D cameras, LIDAR, and navigation and hazardous material sensors) was created in advance, which further strengthens the success chances of the SENEKA project. With these resources the consortium has a unique basis for its planned ambitious project that is unique in Germany. Involved in the SENEKA projects are Fraunhofer Institutes Optronics, System Technologies and Image Exploitation IOSB in Karlsruhe (Project Management) and Ilmenau, Manufacturing Engineering and Automation IPA in Stuttgart, Intelligent Analysis and Information Systems IAIS in Sankt Augustin, Integrated Circuits IIS in Erlangen and Physical Measurement Techniques IPM in Freiburg.

At CeBIT Fraunhofer will present the SENEKA project at its stand in Hall 9.

Further information and images under:
http://www.iosb.fraunhofer.de/servlet/is/20222/

http://www.iosb.fraunhofer.de/servlet/is/43497/

Dipl.-Ing. Sibylle Wirth |

More articles from Information Technology:

nachricht Secure networks for the Internet of the future
25.08.2016 | Julius-Maximilians-Universität Würzburg

nachricht New microchip demonstrates efficiency and scalable design
23.08.2016 | Princeton University, Engineering School

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>