Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SENEKA Sensor network with mobile robots for disaster management

25.02.2014
This year again people are suffering from severe natural disasters. Where tidal waves, earthquakes or severe storms wreak havoc in towns, villages and agricultural land, peoples’ plight is always great. The key challenge in managing large-scale natural disasters is to provide rapid and comprehensive reconnaissance of the situation to facilitate a swift, targeted search for victims and identify access routes for emergency services.

This year again people are suffering from severe natural disasters. Where tidal waves, earthquakes or severe storms wreak havoc in towns, villages and agricultural land, peoples’ plight is always great. The key challenge in managing large-scale natural disasters is to provide rapid and comprehensive reconnaissance of the situation to facilitate a swift, targeted search for victims and identify access routes for emergency services.


The mobile ground surveillance and control station in a van and various ground robots (UGV) and airborne robots (UAV)

Fraunhofer IOSB 2014

Where industrial or facilities are affected, the area may be additionally contaminated by radioactivity or leaking toxins. Although a rapid rescue of victims is essential, sources of danger to the rescuer must also be detected as quickly as possible. Here networked robots and sensors can pay a valuable contribution.

State of the art

The conventional methods used in disaster management, which are characterized by human rescuers and dogs, fall increasingly short of being able to meet the complex requirements posed by such events. Initial experience during rescue work at the destroyed World Trade Center in New York proved that the use of robots and sensors results in a more efficient search for victims and sources of danger and relieves the emergency services.

For an efficient and effective disaster management, it is advisable to have several different robots and sensors on the ground and in the air enter the affected area. These communicate with each other over wireless connections, are equipped depending on the situation at hand and are dynamically networked with the rescue teams. The resulting division of labor and information exchange allows reconnaissance and rescue work to be conducted more rapidly. To date there are no practicable solutions on the market.

Networked unmanned aerial and ground vehicles support the rescue forces

For particularly large disaster areas, the SENEKA concept accelerates the situation assessment because the sensors and robots distributed across the area can interlink to form cooperative teams (swarm intelligence). The parallelization of tasks and the use of synergy effects (for example by combining local- and wide-area reconnaissance sensors) facilitate a faster, more targeted and situation-specific search for victims and hazards. One moving ground sensor platform (UGV), for example, can be accompanied by one airborne sensor platform (UAV), such as a quadrocopter. The aerial perspective of the UAV is helping the UGV to find its way and search for victims.

Using a staged disaster scenario, the SENEKA concept is already being tested.

The project consortium regulary assesses the functionality and performance of the SENEKA concept and prototype components under close consultation of important end users (THW and the fire departments of Mannheim and Berlin). In order to proof the functionality and performance of the SENEKA concept at the end of 2014 a comprehensive realistic use case will be employed at the test site of the Federal Office of Civil Protection and Disaster Assistance (BBK) in Ahrweiler.

The SENEKA project aims to pay a substantial contribution to closing the gap between research and practical usage with the new possibilities offered by the new information, sensor and robot technologies. The complementary skills and extensive experience of the participating Fraunhofer Institutes IOSB, IAIS, IIS, IPM, and IPA create a good basis for achieving the ambitious objectives of SENEKA.

Through targeted strategic investments an infrastructure (various UAV, UGV, mobile control centers,wireless s-net components, 2D/3D cameras, LIDAR, and navigation and hazardous material sensors) was created in advance, which further strengthens the success chances of the SENEKA project. With these resources the consortium has a unique basis for its planned ambitious project that is unique in Germany. Involved in the SENEKA projects are Fraunhofer Institutes Optronics, System Technologies and Image Exploitation IOSB in Karlsruhe (Project Management) and Ilmenau, Manufacturing Engineering and Automation IPA in Stuttgart, Intelligent Analysis and Information Systems IAIS in Sankt Augustin, Integrated Circuits IIS in Erlangen and Physical Measurement Techniques IPM in Freiburg.

At CeBIT Fraunhofer will present the SENEKA project at its stand in Hall 9.

Further information and images under:
http://www.iosb.fraunhofer.de/servlet/is/20222/

http://www.iosb.fraunhofer.de/servlet/is/43497/

Dipl.-Ing. Sibylle Wirth |

More articles from Information Technology:

nachricht The Flexible Grid Involves its Users
27.09.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Optical fiber transmits one terabit per second – Novel modulation approach
16.09.2016 | Technische Universität München

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>