Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SENEKA Sensor network with mobile robots for disaster management

25.02.2014
This year again people are suffering from severe natural disasters. Where tidal waves, earthquakes or severe storms wreak havoc in towns, villages and agricultural land, peoples’ plight is always great. The key challenge in managing large-scale natural disasters is to provide rapid and comprehensive reconnaissance of the situation to facilitate a swift, targeted search for victims and identify access routes for emergency services.

This year again people are suffering from severe natural disasters. Where tidal waves, earthquakes or severe storms wreak havoc in towns, villages and agricultural land, peoples’ plight is always great. The key challenge in managing large-scale natural disasters is to provide rapid and comprehensive reconnaissance of the situation to facilitate a swift, targeted search for victims and identify access routes for emergency services.


The mobile ground surveillance and control station in a van and various ground robots (UGV) and airborne robots (UAV)

Fraunhofer IOSB 2014

Where industrial or facilities are affected, the area may be additionally contaminated by radioactivity or leaking toxins. Although a rapid rescue of victims is essential, sources of danger to the rescuer must also be detected as quickly as possible. Here networked robots and sensors can pay a valuable contribution.

State of the art

The conventional methods used in disaster management, which are characterized by human rescuers and dogs, fall increasingly short of being able to meet the complex requirements posed by such events. Initial experience during rescue work at the destroyed World Trade Center in New York proved that the use of robots and sensors results in a more efficient search for victims and sources of danger and relieves the emergency services.

For an efficient and effective disaster management, it is advisable to have several different robots and sensors on the ground and in the air enter the affected area. These communicate with each other over wireless connections, are equipped depending on the situation at hand and are dynamically networked with the rescue teams. The resulting division of labor and information exchange allows reconnaissance and rescue work to be conducted more rapidly. To date there are no practicable solutions on the market.

Networked unmanned aerial and ground vehicles support the rescue forces

For particularly large disaster areas, the SENEKA concept accelerates the situation assessment because the sensors and robots distributed across the area can interlink to form cooperative teams (swarm intelligence). The parallelization of tasks and the use of synergy effects (for example by combining local- and wide-area reconnaissance sensors) facilitate a faster, more targeted and situation-specific search for victims and hazards. One moving ground sensor platform (UGV), for example, can be accompanied by one airborne sensor platform (UAV), such as a quadrocopter. The aerial perspective of the UAV is helping the UGV to find its way and search for victims.

Using a staged disaster scenario, the SENEKA concept is already being tested.

The project consortium regulary assesses the functionality and performance of the SENEKA concept and prototype components under close consultation of important end users (THW and the fire departments of Mannheim and Berlin). In order to proof the functionality and performance of the SENEKA concept at the end of 2014 a comprehensive realistic use case will be employed at the test site of the Federal Office of Civil Protection and Disaster Assistance (BBK) in Ahrweiler.

The SENEKA project aims to pay a substantial contribution to closing the gap between research and practical usage with the new possibilities offered by the new information, sensor and robot technologies. The complementary skills and extensive experience of the participating Fraunhofer Institutes IOSB, IAIS, IIS, IPM, and IPA create a good basis for achieving the ambitious objectives of SENEKA.

Through targeted strategic investments an infrastructure (various UAV, UGV, mobile control centers,wireless s-net components, 2D/3D cameras, LIDAR, and navigation and hazardous material sensors) was created in advance, which further strengthens the success chances of the SENEKA project. With these resources the consortium has a unique basis for its planned ambitious project that is unique in Germany. Involved in the SENEKA projects are Fraunhofer Institutes Optronics, System Technologies and Image Exploitation IOSB in Karlsruhe (Project Management) and Ilmenau, Manufacturing Engineering and Automation IPA in Stuttgart, Intelligent Analysis and Information Systems IAIS in Sankt Augustin, Integrated Circuits IIS in Erlangen and Physical Measurement Techniques IPM in Freiburg.

At CeBIT Fraunhofer will present the SENEKA project at its stand in Hall 9.

Further information and images under:
http://www.iosb.fraunhofer.de/servlet/is/20222/

http://www.iosb.fraunhofer.de/servlet/is/43497/

Dipl.-Ing. Sibylle Wirth |

More articles from Information Technology:

nachricht Who can find the fish that makes the best sound?
28.02.2017 | Technische Universität Wien

nachricht Many Android password managers unsafe
28.02.2017 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>