Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists trial system to improve safety at sea

02.02.2015

New satellite imaging concept proposed by University of Leicester-led team could significantly reduce search areas for missing boats and planes

  • Concept uses satellite technology already in orbit to take images of sea
  • Enables ship and plane movement to be pinpointed to much more accuracy
  • Data can be used when vessels are lost at sea to minimise search area and speed up search and rescue time
  • Could have been used to aid search for missing Malaysian flight MH370

Each of the 58 satellites carries a camera which can take images of objects on the ocean surface, providing detail ranging from a few tens of cm to hundreds of meters. This animation illustrates the satellites (green dots) orbiting the Earth, with the field of view of each camera shown as a yellow patch as it scans the surface recording images.

Credit: University of Leicester

A space scientist at the University of Leicester, in collaboration with the New Zealand Defence Technology Agency and DMC International Imaging, has been trialling a concept for using satellite imagery to significantly improve the chances of locating ships and planes, such as the missing Malaysian flight MH370, lost at sea.

A preliminary study published this month in the International Journal of Remote Sensing, identified 54 satellites with 85 sensors, currently only taking images of land, which could be used to take images of the Earth's oceans and inland waters.

The research team believe regularly updated images of the seas via these satellites could enable the reduction of search areas for missing ships to just a few hundred square miles. This offers the possibility of dramatically reducing search and rescue times and significantly improving chances of survival for missing ships.

Dr Nigel Bannister from the University's department of Physics and Astronomy explained: "If you are in the open ocean, and you get into difficulty, particularly in a small vessel, there is a significant chance that you will be lost at sea. There is currently a big problem tracking small vessel maritime traffic and this system could provide a much improved awareness of vessel movements across the globe, using technology that already exists.

"This isn't a surveillance system that monitors vessel movements across the oceans in real time, like radar tracking of aircraft in the sky; instead we have proposed a system which records images every time a satellite passes over specific points of the sea. If we are alerted to a lost vessel, the images allow us to pinpoint its last observed position. This could be very powerful for constraining search areas and it could reduce the time it takes to locate missing boats and planes, and hopefully their crews and passengers."

David Neyland, former Assistant Director of the US Navy Office of Naval Research-Global, who funded the research, added: "The University of Leicester brought to this research a unique capability to build a public, open source model, of an International Virtual Constellation of spacecraft from 19 nations - a transparent view of space operations never done before.

"Dr Bannister's critical knowledge and enthusiasm are a driving force to make space-based maritime domain awareness a reality. The University of Leicester's research is a watershed event encouraging international satellite owners and operators to collect and share open ocean imagery for the common good of enhancing safety of life at sea. The case of the missing Malaysian flight MH370 demonstrates how easy it is to lose a large object, even with today's technology."

The team is now testing the concept, working on the automated detection of vessels within imagery provided from the NigeriaSat 2 and UK-DMC2 satellites by DMC International Imaging, and in cooperation with the New Zealand Defence Technology Agency, with the ultimate goal to develop a practical system based on the concept. It is hoped that this system will be active as a maritime monitoring system in a few years' time as it exploits satellites and technologies which already exist.

###

Notes to Editors:

This research has been published by the International Journal of Remote Sensing, DOI: 10.1080/01431161.2014.990647.

You can listen to, download or embed a podcast interview with Dr Nigel Bannister explaining his research in more detail at: https://soundcloud.com/university-of-leicester/nigel-bannister and view and embed animations illustrating the concept at: https://www.youtube.com/watch?v=-FQnyC36r0o

Original files for images, videos and podcast available to download from: https://www.dropbox.com/sh/vfvd4rn4ggqtgbl/AADKgMypXIPLC2AVPk_5aeFwa?dl=0

For more information, please contact Dr Nigel Bannister via nb101@le.ac.uk

Media Contact

Dr. Nigel Bannister
nb101@le.ac.uk
44-011-622-31043

 @UniofLeicester

http://www.leicester.ac.uk 

Dr. Nigel Bannister | EurekAlert!

Further reports about: lost at sea maritime movements oceans open ocean planes satellite

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>