Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers from Kiel and Bochum develop new information storage device

12.10.2015

Scientists from Kiel University and the Ruhr Universität Bochum (RUB) have developed a new way to store information that uses ions to save data and electrons to read data. This could enable the size of storage cells to be reduced to atomic dimensions. But that is not the only advantage of the new technology, as the researchers reported in the journal Scientific Reports.

"Six plus seven makes three - plus one carried over", calculated Professor Hermann Kohlstedt, Head of the Nanoelectronic group at Kiel University. This describes that storing information in the short or long term is important - even for the simplest calculations. Modern computers use this principle in practically every Bit (unit of measurement for the digital information content) and the almost unbelievable increase in performance over the last decade was based on a very simple rule: faster processors and more storage space.


Caption: Mirko Hansen in the clean room at Kiel's Faculty of Engineering, using a microscope to check the manufactured storage cells.

Photo/Copyright: AG Nanoelectronic

Standard memory devices are based on electrons which are displaced by applying voltage. The development of ever smaller and more energy-efficient storage devices according to this principle, however, is increasingly approaching its limits: because there is not just one storage device in our computers, but several optimised ones, depending on the task. "Moving data between individual storage devices has now begun to take a not inconsiderable amount of time. Put simply: more is moved backwards and forwards than is calculated", said Kohlstedt. That is why industrial companies and research institutes around the world are working on a more efficient, universal storage device that combines the advantages of all storage devices and moves as little data as possible back and forth.

In order to do so, researchers want to move away from charge-based storage and towards the type which is based on electrical resistance. A component just like this has now come from the labs in Kiel and Bochum. It consists of two metallic electrodes that are separated by a so-called solid ion conductor, usually a transition metal oxide. If a voltage is then applied, the ohmic resistance of the storage cell changes. This is caused by oxidation and reduction processes on the electrodes, as well as ions within the layer between being displaced. The advantage is that cells that are constructed in this way are easy to produce and can be reduced to almost the size of atoms.

The scientists achieve a long storage time by setting the ion density in the cells precisely via the voltage applied. "That was a big challenge", said Mirko Hansen, doctoral candidate and lead author of the study from Kohlstedt's team, because electronic and ionic effects needed to be uncoupled in order to manage this. "Electrons are roughly 1000 times lighter than ions and so they move much more easily under the influence of an external voltage. We were able to successfully exploit this, whereby in our component, the ions are immovable for extremely low voltages, while the electrons remain mobile and can be used to read the storage status."

The trick: the researchers built an ion conductor, which was only a few nanometres (a millionth of a millimetre) thin to utilise quantum-mechanical effects for the flow through the storage cells. "The tunnel effect enables us to move electrons through the ultra-thin layer with very little energy", said Martin Ziegler, co-author of the publication from Kiel. To put it clearly, ions are moved within the storage cell at voltages above one volt, and electrons, on the other hand, at voltages far below one volt. This way, ions can be specifically used for storing and electrons specifically for reading data.

The researchers also reported that their research had another very interesting element. The new resistance-based storage devices could even simulate brain structures. Rapid pattern recognition and a low energy consumption in connection with enormous parallel data processing would enable revolutionary computer architectures. "This opens up a massive area for innovations in combination with terms like Industry 4.0, in which autonomous robots work, or cars which drive themselves and are out on our roads", said Professor Hermann Kohlstedt and his colleague from Bochum, Dr Thomas Mussenbrock to describe the research results. They are both working on developing artificial neural networks in the 'FOR 2093' researcher group.

Original publication
M. Hansen, M. Ziegler, L. Kolberg, R. Soni, S. Dirkmann, T. Mussenbrock & H. Kohlstedt. A double barrier memristive device. Published 08 September 2015, Scientific Reports 5, Article number: 13753 (2015). doi:10.1038/srep13753

More information:
www.for2093.uni-kiel.de

Details, which are only a millionth of a millimetre in size: This is what the research focus "Kiel Nano, Surface and Interface Science – KiNSIS" at Kiel University has been working on. In the nano-cosmos, different laws prevail than in the macroscopic world - those of quantum physics. Through intensive, interdisciplinary cooperation between materials science, chemistry, physics, biology, electrical engineering, computer science, food technology and various branches of medicine, the research focus aims to understand the systems in this dimension and to implement the findings in an application-oriented manner. Molecular machines, innovative sensors, bionic materials, quantum computers, advanced therapies and much more could be the result. More information at www.kinsis.uni-kiel.de

Contact:
Professor Dr Hermann Kohlstedt
Nanoelektronik
Kiel University
Tel.: +49 (0)431 880 6075
E-mail: hko@tf.uni-kiel.de

Mirko Hansen
Nanoelektronik
Kiel University
Tel.: +49 (0)431 880 6079
E-mail: mha@tf.uni-kiel.de

Dr Martin Ziegler
Nanoelektronik
Kiel University
Tel.: +49 (0)431 880 6067
E-mail: maz@tf.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel
Further information:
http://www.uni-kiel.de

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>