Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Beckman Researchers Unveil Powerful New Tool for Language Studies

A paper by four faculty members and three graduate students from the Beckman Institute at the University of Illinois published today by the Proceedings of the National Academy of Sciences is reporting on the successful application of a fast optical imaging technique to language processing, giving researchers a powerful new tool for understanding how language is processed by the brain.

The researchers and students, all members of the Biological Intelligence research initiative, co-authored the paper, titled Imaging Cortical Dynamics of Language Processing with the Event-related Optical Signal, for the current issue of the Proceedings of the National Academy of Sciences journal and posted online today. Authors are Department of Psychology faculty members Susan M. Garnsey, Gary S. Dell, Monica Fabiani, and Gabriele Gratton, as well as graduate students Chun-Yu Tse, Chia-Lin Lee, and Jason Sullivan.

The PNAS paper reports on applying for the first time a functional brain-imaging method developed by Fabiani and Gratton called EROS (event-related optical signal) to the study of neuronal interactions within and between the left temporal and frontal cortex in regions of the brain associated with language processing. Unlike other methods, EROS rapidly provides both spatial and temporal information on how the brain processes language.

“The question here is that the relative interplay between the two areas is not very well understood,” said Gratton. “It’s not really clear how they interact with each other; it’s not obvious how information is moving between these two regions. Now we can study a lot of things that weren’t possible before.”

EROS uses near infrared light to identify changes in the light scattering properties of brain tissue related to neuronal activity. Applied to the topic of language processing, the neuroimaging technique gives insights that aren’t possible with other methods that are commonly used by researchers in the field such as functional Magnetic Resonance Imaging (fMRI), which provides excellent spatial but not temporal information. Techniques which are effective for studying temporal aspects of language processing like scalp electrodes that record event-related brain potentials (ERPs) don’t provide detailed spatial information.

In their paper, the researchers write: “Analysis of the neural basis of sentence processing requires separating, in both space and time, the activity observed in each of the relevant regions.” EROS allowed them to identify changes in neuronal activity related to language processing while providing “spatial and temporal resolutions on the order of a few millimeters and milliseconds, respectively.” That capability means researchers can get a dynamic, as opposed to static, view of interactions in the brain associated with language processing.

“Thanks to EROS we are studying the dynamics,” Fabiani said. “People have absolutely no trouble understanding language at fast speeds but static methods like fMRI give you one picture for everything that happens and really don’t capture the dynamics of language.”

Due to the speeds involved in language processing, the faster capabilities that EROS provides are important for researchers like Garnsey whose focus is on language comprehension.

“The really crucial thing this technique adds is the ability to look at the relative timing of different aspects of language comprehension,” Garnsey said. “Words come in at an average of about four per second; that’s true for both reading and listening, so things are changing really fast. At first you think what I’m saying means one thing and then the very next word tells you, oh no, it means this other thing instead.”

Garnsey borrowed an analogy from a speaker she heard a few years ago discussing fMRI, which looks at blood flow to active regions in the brain as a method for studying cognitive processes.

“The main part of the (fMRI) signal happens many seconds after the event that you are interested in,” she said. “This speaker likened that to trying to tell what’s happening 30 million light-years away using light that is only now reaching you 30 million years after the event actually happened.

“Whereas what we are doing is something that lets you look right now as it happens. Think of how many more words have come in through the course of six to eight to 10 seconds, how many times your interpretations could have been changed by those new incoming words.”

The researchers looked at regions in the left frontal and temporal lobes of the brain that are known to be crucial to language processing, including the superior temporal cortex (STC), middle temporal cortex (MTC), and left inferior frontal cortex (IFC). They focused on the spatial and temporal dynamics of activity in these regions while people processed semantic and syntactic anomalies, and confirmed the importance of these regions in sentence processing. They also gained data on possible activation flow from posterior to frontal regions of the brain and on the possible involvement of distinct areas of the superior and middle temporal cortices in semantic and syntactic processing.

Fabiani said the fact that the EROS results correlate with simultaneously collected ERP results validates the use of EROS for studying language processing.

Garnsey said she recently gave a talk about the study at an annual conference for language researchers in Finland and already has about 15 e-mails requesting copies of the paper.

“We know that the fine timing is incredibly important,” Garnsey said. “People are excited about this technique because it lets you look at both the fine timing of events and what parts of the brain are contributing to those different kinds of events.”

Steve McGaughey | University of Illinois
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>