Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beckman Researchers Unveil Powerful New Tool for Language Studies

17.10.2007
A paper by four faculty members and three graduate students from the Beckman Institute at the University of Illinois published today by the Proceedings of the National Academy of Sciences is reporting on the successful application of a fast optical imaging technique to language processing, giving researchers a powerful new tool for understanding how language is processed by the brain.

The researchers and students, all members of the Biological Intelligence research initiative, co-authored the paper, titled Imaging Cortical Dynamics of Language Processing with the Event-related Optical Signal, for the current issue of the Proceedings of the National Academy of Sciences journal and posted online today. Authors are Department of Psychology faculty members Susan M. Garnsey, Gary S. Dell, Monica Fabiani, and Gabriele Gratton, as well as graduate students Chun-Yu Tse, Chia-Lin Lee, and Jason Sullivan.

The PNAS paper reports on applying for the first time a functional brain-imaging method developed by Fabiani and Gratton called EROS (event-related optical signal) to the study of neuronal interactions within and between the left temporal and frontal cortex in regions of the brain associated with language processing. Unlike other methods, EROS rapidly provides both spatial and temporal information on how the brain processes language.

“The question here is that the relative interplay between the two areas is not very well understood,” said Gratton. “It’s not really clear how they interact with each other; it’s not obvious how information is moving between these two regions. Now we can study a lot of things that weren’t possible before.”

EROS uses near infrared light to identify changes in the light scattering properties of brain tissue related to neuronal activity. Applied to the topic of language processing, the neuroimaging technique gives insights that aren’t possible with other methods that are commonly used by researchers in the field such as functional Magnetic Resonance Imaging (fMRI), which provides excellent spatial but not temporal information. Techniques which are effective for studying temporal aspects of language processing like scalp electrodes that record event-related brain potentials (ERPs) don’t provide detailed spatial information.

In their paper, the researchers write: “Analysis of the neural basis of sentence processing requires separating, in both space and time, the activity observed in each of the relevant regions.” EROS allowed them to identify changes in neuronal activity related to language processing while providing “spatial and temporal resolutions on the order of a few millimeters and milliseconds, respectively.” That capability means researchers can get a dynamic, as opposed to static, view of interactions in the brain associated with language processing.

“Thanks to EROS we are studying the dynamics,” Fabiani said. “People have absolutely no trouble understanding language at fast speeds but static methods like fMRI give you one picture for everything that happens and really don’t capture the dynamics of language.”

Due to the speeds involved in language processing, the faster capabilities that EROS provides are important for researchers like Garnsey whose focus is on language comprehension.

“The really crucial thing this technique adds is the ability to look at the relative timing of different aspects of language comprehension,” Garnsey said. “Words come in at an average of about four per second; that’s true for both reading and listening, so things are changing really fast. At first you think what I’m saying means one thing and then the very next word tells you, oh no, it means this other thing instead.”

Garnsey borrowed an analogy from a speaker she heard a few years ago discussing fMRI, which looks at blood flow to active regions in the brain as a method for studying cognitive processes.

“The main part of the (fMRI) signal happens many seconds after the event that you are interested in,” she said. “This speaker likened that to trying to tell what’s happening 30 million light-years away using light that is only now reaching you 30 million years after the event actually happened.

“Whereas what we are doing is something that lets you look right now as it happens. Think of how many more words have come in through the course of six to eight to 10 seconds, how many times your interpretations could have been changed by those new incoming words.”

The researchers looked at regions in the left frontal and temporal lobes of the brain that are known to be crucial to language processing, including the superior temporal cortex (STC), middle temporal cortex (MTC), and left inferior frontal cortex (IFC). They focused on the spatial and temporal dynamics of activity in these regions while people processed semantic and syntactic anomalies, and confirmed the importance of these regions in sentence processing. They also gained data on possible activation flow from posterior to frontal regions of the brain and on the possible involvement of distinct areas of the superior and middle temporal cortices in semantic and syntactic processing.

Fabiani said the fact that the EROS results correlate with simultaneously collected ERP results validates the use of EROS for studying language processing.

Garnsey said she recently gave a talk about the study at an annual conference for language researchers in Finland and already has about 15 e-mails requesting copies of the paper.

“We know that the fine timing is incredibly important,” Garnsey said. “People are excited about this technique because it lets you look at both the fine timing of events and what parts of the brain are contributing to those different kinds of events.”

Steve McGaughey | University of Illinois
Further information:
http://www.uiuc.edu

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>