Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grid computing offers new hope in race against bird flu

05.10.2007
Last month a collaboration of European and Asian researchers launched a new attack against the deadly bird flu virus, harnessing the combined power of more than 40,000 computers across 45 countries to boost the pace of anti-viral drug discovery.

Called Enabling Grids for E-sciencE, the computing grid connects ordinary PCs to form a super-sized supercomputer that is being used during this challenge to analyse the potential of more than 500,000 drug-like molecules over the next few weeks.

This effort comes as new data released last week by Peking University in Beijing, China, shows that the H5N1 bird flu virus can pass through the placenta of pregnant women to the unborn fetus, and can infect organs other than the lungs in adults. A rapid response to any pandemic outbreak of the virus would be essential to its control.

Dr Ying-Ta Wu, biologist at the Genomics Research Center of the Academia Sinica, says computing grids like EGEE are the fastest and cheapest way to discover new drug leads.

“We are using EGEE to find new molecules that can inhibit the activities of the influenza virus,” Dr Ying-Ta Wu explains “During previous challenges using the EGEE grid we discovered about 200 molecules with the potential to become drugs against bird flu.”

The EGEE computing grid powers drug discovery software that allows researchers to compute the probability that a drug-like molecule will dock with active sites on the virus and thus inhibit its action. Using the results of such in silico screening, researchers can predict which compounds are most effective at blocking the virus. This accelerates the discovery of novel potent inhibitors by minimising the non-productive trial-and-error approach in a laboratory.

“Asian flu remains a threat to world health and we are well aware that any pandemic could quickly spread throughout Europe" said Viviane Reding, European Commissioner for Information Society and Media. "I am pleased that the European project EGEE has found such an important application for computer grid technology as speeding-up drug discovery against neglected and emerging diseases. Collaboration between Europe and Asia is essential if we are to address world wide threats to public health”.

At the EGEE’07 conference in Budapest, Ulf Dahlsten, Director of “Emerging Technologies and Infrastructures” in the Information Society and Media Directorate-General of the European Commission, used the example of EGEE’s success with bird flu to illustrate the potential contributions of e-Infrastructures to science. "Computer Grids have achieved a productivity increase of more than 6000% in the identification of potential new drugs" he said. "300,000 molecules have already been screened using the EGEE grid. Of these, 123 potential inhibitors were identified, of which seven have now been shown to act as inhibitors in in-vitro laboratory tests. This is a six percent success rate compared to typical values of around 0.1 percent using classical drug discovery methods."

Sarah Purcell | alfa
Further information:
http://www.eu-egee.org/
http://www.genomics.sinica.edu.tw/

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>