Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grid computing offers new hope in race against bird flu

05.10.2007
Last month a collaboration of European and Asian researchers launched a new attack against the deadly bird flu virus, harnessing the combined power of more than 40,000 computers across 45 countries to boost the pace of anti-viral drug discovery.

Called Enabling Grids for E-sciencE, the computing grid connects ordinary PCs to form a super-sized supercomputer that is being used during this challenge to analyse the potential of more than 500,000 drug-like molecules over the next few weeks.

This effort comes as new data released last week by Peking University in Beijing, China, shows that the H5N1 bird flu virus can pass through the placenta of pregnant women to the unborn fetus, and can infect organs other than the lungs in adults. A rapid response to any pandemic outbreak of the virus would be essential to its control.

Dr Ying-Ta Wu, biologist at the Genomics Research Center of the Academia Sinica, says computing grids like EGEE are the fastest and cheapest way to discover new drug leads.

“We are using EGEE to find new molecules that can inhibit the activities of the influenza virus,” Dr Ying-Ta Wu explains “During previous challenges using the EGEE grid we discovered about 200 molecules with the potential to become drugs against bird flu.”

The EGEE computing grid powers drug discovery software that allows researchers to compute the probability that a drug-like molecule will dock with active sites on the virus and thus inhibit its action. Using the results of such in silico screening, researchers can predict which compounds are most effective at blocking the virus. This accelerates the discovery of novel potent inhibitors by minimising the non-productive trial-and-error approach in a laboratory.

“Asian flu remains a threat to world health and we are well aware that any pandemic could quickly spread throughout Europe" said Viviane Reding, European Commissioner for Information Society and Media. "I am pleased that the European project EGEE has found such an important application for computer grid technology as speeding-up drug discovery against neglected and emerging diseases. Collaboration between Europe and Asia is essential if we are to address world wide threats to public health”.

At the EGEE’07 conference in Budapest, Ulf Dahlsten, Director of “Emerging Technologies and Infrastructures” in the Information Society and Media Directorate-General of the European Commission, used the example of EGEE’s success with bird flu to illustrate the potential contributions of e-Infrastructures to science. "Computer Grids have achieved a productivity increase of more than 6000% in the identification of potential new drugs" he said. "300,000 molecules have already been screened using the EGEE grid. Of these, 123 potential inhibitors were identified, of which seven have now been shown to act as inhibitors in in-vitro laboratory tests. This is a six percent success rate compared to typical values of around 0.1 percent using classical drug discovery methods."

Sarah Purcell | alfa
Further information:
http://www.eu-egee.org/
http://www.genomics.sinica.edu.tw/

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>